• 제목/요약/키워드: torque model

Search Result 1,368, Processing Time 0.025 seconds

Minimization of Torque Ripple for an IPMSM with a Notched Rotor Using the Particle Swarm Optimization Method

  • Shin, Pan Seok;Kim, Ho Youn;Kim, Yong Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1577-1581
    • /
    • 2014
  • This paper presents a method to minimize torque ripple of a V-type IPMSM using the PSO (Particle Swarm Optimization) method with FEM. The proposed algorithm includes one objective function and three design variables for a notch on the surface of a rotor. The simulation model of the V-type IPMSM has 3-phases, 8-poles and 48 slots with 2 notches on the one-pole rotor surface. The arc-angle, length and width of the notch are optimized to minimize the torque ripple of the motor. The cogging torque of the model is reduced by 55.6% and the torque ripple is decreased by 15.5 %. Also, the efficiency of the motor is increased by 15.5 %.

Fundamental Experiments for Attitude Control of a Low Earth Orbit Satellite Using Ion Drag

  • Ohue, Miho;Koizumi, Hiroyuki;Kuninaka, Hitoshi;Nishida, Michio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.561-565
    • /
    • 2008
  • Generally, reaction wheels or thrusters are used for attitude control of a satellite. There is a potential method for the attitude control utilizing the plasma flow on the Low Earth Orbit. In the present study, experiments which simulate attitude control of a Low Earth Orbit Satellite using the ionosphere were conducted. In this experiment, a plasma flow was generated by a steady-state Hall type accelerator. However it is known that the Hall type accelerator, which is used as plasma source, produces a torque around its axis called "swirl torque". This torque would affect the attitude control in the above-mentioned experiments. First of all, we conducted the measurement of the swirl torque. Secondly, experiments using a satellite model with negative electrodes were conducted. The negative electrodes generated torque around the axis, and controlled the attitude of the satellite model by changing the applied voltage.

  • PDF

Development of a Prototype New Electric Power Steering (EPS) System (Prototype의 새로운 Electric Power Steering (EPS) System의 개발)

  • Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.684-690
    • /
    • 2006
  • This study proposes and validates a new column type electric power steering system (EPS-TT). It is driven by a uni-directional motor and two electro-magnetic clutches. The assist motor produces assist torque in only one direction and two clutches transmit the torque to the column of steering system in either left or right direction with respect to the steering input. A full order and a reduced order models are developed to evaluate the EPS-TT. Models are also used to investigate the vehicle responses. A PID control logic is designed to control the torque of the assist motor. A driver model is applied to the system and the resulting performances are analyzed. The results show that the performances of the full order model are similar to those of reduced order model. The results also prove that the performances achieved by the EPS-TT are improved compared to those of a conventional EPS-TT across the frequency domain.

Analysis of Gear Rattle Using a Dynamic Load Model of Agricultural Tractor Driveline (동하중 모형을 이용한 트랙터 전동라인의 치타음 분석)

  • 류일훈;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.371-380
    • /
    • 2002
  • The objectives of this study were to analyze gear rattle in a power drive line using its dynamic model and to derive design guidelines to eliminate it. A 72 degrees of freedom model of power driveline of an agricultural tractor was developed and proved to be valid fer predicting the collision characteristics of gears in mesh, which may determine whether or not the gear rattle will occur. Using the model the effects on the rattle of drag torque, backlash, mass moment of inertia, transmitting torque were analyzed. Increasing drag torque or decreasing mass moment of inertia reduced gear rattle. The gears transmitting power do not develop rattles. It was also found that a large amount of rattle is likely to be developed by the change gears placed at the end of idle shafts. Increasing the drag torque to such change gears may be the most effective way of reducing the gear rattle in a tractor driveline.

Analytic Model of Spin-Torque Oscillators (STO) for Circuit-Level Simulation

  • Ahn, Sora;Lim, Hyein;Shin, Hyungsoon;Lee, Seungjun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Spin-torque oscillators (STO) is a new device that can be used as a tunable microwave source in various wireless devices. Spin-transfer torque effect in magnetic multilayered nanostructure can induce precession of magnetization when bias current and external magnetic field are properly applied, and a microwave signal is generated from that precession. We proposed a semi-empirical circuit-level model of an STO in previous work. In this paper, we present a refined STO model which gives more accuracy by considering physical phenomena in the calculation of effective field. Characteristics of the STO are expressed as functions of external magnetic field and bias current in Verilog-A HDL such that they can be simulated with circuit-level simulators such as Hspice. The simulation results are in good agreement with the experimental data.

A development of torque sensor using telemeter techniques (Telemeter방식 torque 센서 개발)

  • 김수광;김태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1204-1208
    • /
    • 1991
  • This paper describes the 2-channel telemeter system using AM(Amplitude Modulation) - FM (Frequency Modulation) techniques suitable for measurement of spindle torque by strain gage. In order to evaluate the developed system, the model tests were performed for test specimens. The developed system was installed on the plate mill and it was possible to measure and analyze the torque signal of spindle,

  • PDF

Dynamic Analysis of Finger Joint Torque for Tip Pinch Task (두 점 집기 작업 시 손가락 관절토크의 역학적 해석)

  • Kim, Yoon-Jeong;Jeong, Gwang-Hun;Rhee, Kye-Han;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.657-682
    • /
    • 2011
  • This paper presents the dynamic analysis on the joint torque of a finger for the tip pinch task. The dynamic model on finger movement was developed in order to predict the joint torques of an index finger, and the finger was assumed as a three-link planar manipulator. Analysis of the model revealed that the joint stiffness was one of the most important parameters affecting the joint torque. The stiffness of the finger joint was experimentally measured, and it was used in analyzing the finger joint torque required for performing the tip pinch task. The obtained joint torque for the tip pinch task will be used as the design requirements of the finger exoskeletal orthosis actuated by the polymer actuator whose allowable torque limit is relatively low compared to that of a mechanical actuator.

Optimum Design of Stator and Rotor Shape for Cogging Torque Reduction in Interior Permanent Magnet Synchronous Motors

  • Yu, Ju-Seong;Cho, Han-Wook;Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.546-551
    • /
    • 2013
  • This paper deals with the optimum design of the stator and rotor shape of the interior permanent magnet synchronous motors (IPMSM) that are used in applications for automobiles. IPMSMs have the following advantages: high power, high torque, high efficiency, etc. However, cogging torque which causes noise and vibrations is generated at the same time. The optimum design of shape of a IPMSM was carried out with the aim of reducing cogging torque. Six variables which affect to the performance of a IPMSM are chosen. The main effect variables were determined and applied to the response surface methodology (RSM). When compared to the initial model using the finite elements method (FEM), the optimum model highly reduces the cogging torque and improves the total harmonics distortion (THD) of the back-electro motive force (EMF). A prototype of the designed model was manufactured and experimented on to verify the feasibility of the IPMSM.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Induction Motor Speed Controlf MRAS-Based Load-Torque Observer (모델 기준 적응 시스템(MRAS) 부하 토크 관측기를 이용한 유도 전동기의 속도 제어)

  • Cho, Moon-Taek;Lee, Chung-Sik;Lee, Se-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 2007
  • This paper investigates a speed sensorless control of induction motor. The control strategy is based on MRAS(Model Reference Adaptive System) using load-torque observer as a reference model for flux estimation. The speed response of conventional MRAS controller characteristics is affected by variations of load torque disturbance. In the proposed system, the speed control characteristics using a load-torque observer control isn't affected by a load torque disturbance. Control algorithm that propose whole system through MATLAB SIMULINK because do modelling simulation result are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor. Therefore we hope to be extended in industrial application.

  • PDF