• Title/Summary/Keyword: torque loss

Search Result 331, Processing Time 0.492 seconds

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.

Digital simulation of hysteresis motor performance using Preisach model considering time and space harmonics (Preisach 모델을 이용한 히스테리시스 모터 고조파 특성 시뮬레이션)

  • Jung, Hoon;Hong, Sun-Ki;Won, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.5-8
    • /
    • 1988
  • A digital simulation method for Hysteresis motor using Preisach model is proposed. From this, the instantaneous torque, hysteresis loss of rotor can be calculated, considering slot and winding distribution and current harmonics.

  • PDF

A study on a microstepping drive for 2 phase hybrid-type step motors (2상 하이브리드형 스텝 모터의 미세스텝구동에 관한 연구)

  • 권순학;김권호;김광배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.530-534
    • /
    • 1989
  • In this paper we addressed the basic concept of microstepping, analyzed the combined effect of the motor detent torque and the current profile, and implemented a microstepping drive system using an one-chip microprocessor, power MOSFET's, and a 1.8 degree bifilar-wound hybrid-type step motor excited by a bipolar drive. Experimental results show that microstepping produces greater resolution, eliminates resonant step loss, and reduces motor vibrations.

  • PDF

A Study on the Friction Force Onaracteristics of Valve Train System in Gasoline Engine (가솔린기관의 밸브트레인 마찰특성)

  • 윤정의;이만희;김재석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.30-37
    • /
    • 1998
  • It is well known that reduction of friction loss due to the valve train system greatly affects on improvement of fuel economy in internal combustion engine. In order to investigate friction characteristics of valve train system we carried out friction force measurement using test rig developed by ourselves. From test results, we concluded that characteristics of lubrication and friction torque on the valve train system such as mixed and hydrodynamic was mainly governed the contact type between cam and tappet.

  • PDF

Power Loss and Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle according to the Rated Power-Speed (공작기계 스핀들용 유도전동기의 용량-속도에 따른 손실 및 발열특성 해석)

  • Seong, Ki-Hyun;Cho, Han-Wook;Hwang, Joo-Ho;Shim, Jong-Yeob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1668-1677
    • /
    • 2013
  • This paper deals with the power loss and thermal characteristics of induction motor for machine tools according to the rated power and speed. To reduce the fabrication error by thermal strain in rotational machine tools, we calculated the power loss and thermal behavior of induction motors. Firstly, the inverse design of general induction motors for machine tool spindle has been performed. The inverse design results are compared with the torque-speed characteristic curve in motor's catalog. The power loss are calculated by finite element method(FEM) at rated condition. Secondary, the transient thermal characteristics of induction motors are calculated by equivalent thermal resistance model from Motor-CAD S/W. The inverse design, power loss and thermal behavior calculation for induction motors with various rated power and speed has been performed. Finally, to verify the design and calculation process of induction motor, we implemented the experimental set with 0.4kW 1710rpm class industrial induction motor model. The obtained thermal characteristics of experimental model confirmed that the design and power loss calculation processes are appropriate to the prediction of thermal strain in rotational machine tools.

Optimization of a Flywheel PMSM with an External Rotor and a Slotless Stator

  • Holm S.R;Polinder H.;Ferreira J.A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.215-223
    • /
    • 2005
  • An electrical machine for a high-speed flywheel for energy storage in large hybrid electric vehicles is described. Design choices for the machine are motivated: it is a radial-flux external-rotor permanent-magnet synchronous machine without slots in the stator iron and with a shielding cylinder. An analytical model of the machine is briefly introduced whereafter optimization of the machine is discussed. Three optimization criteria were chosen: (1) torque; (2) total stator losses and (3) induced eddy current loss on the rotor. The influence of the following optimization variables on these criteria is investigated: (1) permanent-magnet array; (2) winding distribution and (3) machine geometry. The paper shows that an analytical model of the machine is very useful in optimization.

Preliminary study on a 3D field permanent magnet flux switching machine - from tubular to rotary configurations

  • Wang, Can-Fei;Shen, Jian-Xin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.505-508
    • /
    • 2012
  • A permanent magnet flux switching (PMFS) machine has a simple rotor, whilst both magnets and coils are set in the stator, resulting in easy removal of heat due to both copper loss and eddy current loss in magnets. However, the volume of magnets used in PMFS machines is usually larger than in conventional PM machines, and leakage flux does exist at the non-airgap side. To make full use of the magnets and gain higher power density, a novel 3-dimensional (3D) field PMFS machine is developed. It combines merits of the tubular linear machine, external-rotor rotary machine and axial-flux rotary machine, hence, offers high power density and peak torque capability, as well as efficient utility of magnets owing to the unique configuration of triple airgap fields.

The Comparison of Vibration and Power according to Operation Method of 100W IPM Type Motor

  • Lee, Gyeong-Deuk;Jo, Eul-Gyu;Kim, Gyu-Tak
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.383-388
    • /
    • 2014
  • In This paper, the output characteristics and vibrations were compared and analyzed according to operation method in 100W class. The voltage source is applied only two phase in BLDC drive system therefore commutation torque ripple and imbalance of RMF occurred. Due to this efficiency was significantly degraded because mechanical loss is increased, besides the vibration and noise were greatly generated. The vibration and output characteristics were compared and analyzed according to three phase and BLDC drive system.

Vector Control of a Surface-mounted Permanent Magnet Synchronous motor Including Iron Loss (표면부착형 동기전동기의 철손을 고려한 벡터제어)

  • Choi, Young-Tae;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2217-2220
    • /
    • 1997
  • To achieve the high performance speed control of synchronous permanent magnet motor, the influence of iron loss can not be negleced as the increase of driving frequency with high speed operation. This paper proposes a maximum efficiency control algorithm for permanent magnet synchonous motors by controlling the d-axis component of the armature current at any speed and torque. The objective of the optimum efficiency controller is to seek a combination of d-q axis current components which provide minimum input power (minimum losses) at a certain operating point by adding a small amout of perturbation to the d-axis current reference.

  • PDF

Thermal Analysis of IPMSM According to Current Vector Control Method (전류 벡터 제어 방식에 따른 IPMSM의 온도 특성 해석)

  • Kye, Seung-Hyun;Jeong, Tae-Seok;Cho, Gyu-Won;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1420-1425
    • /
    • 2012
  • Nowadays, Interior permanent magnet synchronous motor(IPMSM) which having high power density is much used for the vehicles. However, IPMSM causes a lot of losses because of high-speed driving and high current density, and temperature rising by iron loss and copper loss could reduce torque characteristics and durability of IPMSM. Therefore, analysis about thermal characteristics of IPMSM is required at design stage. In this paper, temperature characteristics according to current vector control method were analyzed through calculate thermal equivalent circuit. And calculated results were verified through comparing with the experiments.