• Title/Summary/Keyword: topology patterns

Search Result 72, Processing Time 0.024 seconds

Optimal Shape Design of Space Truss Structure using Topology Optimization and Cellular Automata Model (위상최적화와 Cellular Automata 모델을 이용한 대공간 트러스 구조물의 최적형태 설계)

  • Kim, Ho-Soo;Lee, Min-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • It is important to design the optimal shape in the initial process because the influences on the design and construction are large according to the shape and pattern of spatial structures. However, the existing optimal shape designs for spatial structure are performed by the designer's intuition and experiences. Therefore, this study proposes the integrated process using the topology optimization and cellular automata model. First, the initial optimal shapes are obtained by using the topology optimization, and then the spatial truss structural patterns are created through the application of cellular automata rules. Finally, the optimal shapes to satisfy the various design conditions are generated by the structural analysis and size optimization.

A Virtual Topology Management Policy in Multi-Stage Reconfigurable Optical Networks (다단계 재구성 가능한 광 네트워크상에서 가상 토폴로지 관리 정책)

  • Ji-Eun Keum;Lin Zhang;Chan-Hyun Youn
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper. we develop an analytical model to evaluate the virtual topology reconfiguration phase of optical Internet networks. To counter the continual approximation problem brought by traditional heuristic approach, we take the traffic prediction into consideration and propose a new heuristic reconfiguration algorithm called Prediction based Multi-stage Reconfiguration approach. We then use this analytical model to study the different configuration operation policies in response to the changing traffic patterns in the higher layer and the congestion level on the virtual topology. This algorithm persists to decide the optimal instant of reconfiguration easily based on the network state. Simulation results show that our virtual topology management Policy significantly outperforms the conventional one, while the required physical resources are limited.

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.

Optical Implementation of Single-Layer Adaptive Neural Network for Multicategory Classification. (다영상 분류를 위한 단층 적응 신경회로망의 광학적 구현)

  • 이상훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.23-28
    • /
    • 1991
  • A single-layer neural network with 4$\times$4 input neurons and 4 output neurons is optically implemented. Holographic lenslet arrays are used for the e optical interconnection topology, a liquid crystal light valve(LCLV) is used for controlling optical interconection weights. Using a Perceptron learning rule, it classifics input patterns into 4 different categories. It is shown that the performance of the adaptive neural network depends on the learning rate, the correlation of input patterns, and the nonlinear characteristic properties of the liquid crystal light valve.

  • PDF

Reliability-Based Topology Optimization Based on Bidirectional Evolutionary Structural Optimization (양방향 진화적 구조최적화를 이용한 신뢰성기반 위상최적화)

  • Yu, Jin-Shik;Kim, Sang-Rak;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • This paper presents a reliability-based topology optimization (RBTO) based on bidirectional evolutionary structural optimization (BESO). In design of a structure, uncertain conditions such as material property, operational load and dimensional variation should be considered. Deterministic topology optimization (DTO) is performed without considering the uncertainties related to the design variables. However, the RBTO can consider the uncertainty variables because it can deal with the probabilistic constraints. The reliability index approach (RIA) and the performance measure approach (PMA) are adopted to evaluate the probabilistic constraints in this study. In order to apply the BESO to the RBTO, sensitivity number for each element is defined as the change in the reliability index of the structure due to removal of each element. Smoothing scheme is also used to eliminate checkerboard patterns in topology optimization. The limit state indicates the margin of safety between the resistance (constraints) and the load of structures. The limit State function expresses to evaluate reliability index from finite element analysis. Numerical examples are presented to compare each optimal topology obtained from RBTO and DTO each other. It is verified that the RBTO based on BESO can be effectively performed from the results.

Topology optimization of bracing systems in buildings considering the effects of the wind

  • Paulo U. Silva;Rayanne E.L. Pereira;Gustavo Bono
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.473-486
    • /
    • 2023
  • Nowadays, urban centers are increasingly vertical, making architects and engineers look for more efficient tools to analyze the effects of wind on tall buildings. Topology optimization can be used as an efficient tool for the design of bracing systems. Therefore, this work obtained the wind loads that act in the CAARC building, following the Brazilian standard NBR 6123/1988 and using Computational Fluid Dynamics. Four loading situations were considered, using the SIMP and BESO methods to optimize two-dimensional structures. A comparison between the SIMP and BESO methods is presented, showing the differences in the geometry of the solution found by both methods, the percentage variation in the objective function values and the dimensionless processing time. The solutions obtained through the loads obtained by the Brazilian standard are also compared with the numerical solutions obtained by CFD. The results show that the BESO method presented more rigid structures compared to the SIMP method. The bracing structures obtained with the SIMP method always present similar patterns in the distribution and quantity of bars, in contrast to the BESO method where no characteristic topology pattern was observed. It was concluded that even though the structures obtained by the BESO method presented greater stiffness, the SIMP method was less susceptible to the methodology used for the determination of wind loads. Additionally, it was evident the great potential that the combination topology optimization and computational wind engineering have in the design of bracing systems of high functional and aesthetic standards.

A Method for Producing Animation as a Series of Backward-Projected Patterns in a Self-Organizing Map

  • Wakuya, Hiroshi;Takahama, Eishi;Itoh, Hideaki;Fukumoto, Hisao;Furukawa, Tatsuya
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-196
    • /
    • 2012
  • A self-organizing map (SOM) can be seen as an analytical tool to discover some underlying rules in the given data set. Based on such distinctive nature called topology-preserving projection, a new method for generating intermediate patterns was proposed. Then, following to this method, producing animation as a series of backward-projected patterns just like a flip book is tried in this article.

  • PDF

Design and Implementation of Smart Self-Learning Aid: Micro Dot Pattern Recognition based Information Embedding Solution (스마트 학습지: 미세 격자 패턴 인식 기반의 지능형 학습 도우미 시스템의 설계와 구현)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.346-349
    • /
    • 2011
  • In this paper, we design a perceptually invisible dot pattern layout and its recognition scheme, and we apply the recognition scheme into a smart self learning aid for interactive learning aid. To increase maximum information capacity and also increase robustness to the noises, we design a ECC (error correcting code) based dot pattern with directional vector indicator. To make a smart self-learning aid, we embed the micro dot pattern (20 information bit + 15 ECC bits + 9 layout information bit) using K ink (CMYK) and extract the dot pattern using IR (infrared) LED and IR filter based camera, which is embedded in the smart pen. The reason we use K ink is that K ink is a carbon based ink in nature, and carbon is easily recognized with IR even without light. After acquiring IR camera images for the dot patterns, we perform layout adjustment using the 9 layout information bit, and extract 20 information bits from 35 data bits which is composed of 20 information bits and 15 ECC bits. To embed and extract information bits, we use topology based dot pattern recognition scheme which is robust to geometric distortion which is very usual in camera based recognition scheme. Topology based pattern recognition traces next information bit symbols using topological distance measurement from the pivot information bit. We implemented and experimented with sample patterns, and it shows that we can achieve almost 99% recognition for our embedding patterns.

A Study on the Characteristics of Topological Invariant Expression in the Space of Digital Architecture (디지털건축공간에 나타난 위상기하학적 불변항의 표현특성에 관한 연구)

  • Bae Kang-Won;Park Chan-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.64-72
    • /
    • 2005
  • The purpose of this study is to propose a topological design principles and to analyze the space of digital architecture applying topological invariant expressive characteristics. As this study is based on topology as a science of true world's pattern, we intented to explain the concepts and provide some methods of low-level and hyperspace topological invariant Properties. Four major aspects are discussed. Those are connection theory, boundary concept, homotopy group, knot Pattern theory as topological invariant properties. Then we intented to make understand topological characteristics of the Algorithms, luring machine, cellular automata, string theory, membrane, DNA and supramolecular chemistry. In fine, the topological invariant properties of the digital architecture as genetic algorithms based on self-organization and heterogeneous networks of interacting actors can be analyzed and used as a critical tool. Therefore topology can be provided endless possibilities for architecture, designers and scientists intended in expressing the more complex and organic patterns of nature as life.

Effective Network Design Using Reflective Memory System (리플렉티브 메모리 시스템을 이용한 효과적인 네트워크 설계)

  • Lee Sung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.403-408
    • /
    • 2005
  • As the increasing integrity of VLSI, the BIST(Built-In Self Test) is used as an effective method to test chips. Generally the pseudo-random test pattern generation is used for BIST. But it requires too many test patterns when there exist random This paper proposes and presents a new efficient network architecture for Reflective Memory System (RMS). A time to copy shared-data among nodes effects critically on the entire performance of the RMS. In this paper, the recent researches about the RMS are investigated and compared. The device named Topology Conversion Switch(TCS) is introduced to realize the proposed network architecture. One of the RMS based industrial control networks, Ethernet based Real-time Control Network (ERCnet), is adopted to evaluate the performance of the proposed network architecture for RMS.