• Title/Summary/Keyword: topic modeling techniques

Search Result 139, Processing Time 0.026 seconds

Falling Accidents Analysis in Construction Sites by Using Topic Modeling (토픽 모델링을 이용한 건설현장 추락재해 분석)

  • Ryu, Hanguk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.175-182
    • /
    • 2019
  • We classify topics on fall incidents occurring in construction sites using topic modeling among machine learning techniques and analyze the causes of the accidents according to each topic. In order to apply topic modeling based on latent dirichlet allocation, text data was preprocessed and evaluated with Perplexity score to improve the reliability of the model. The most common falling accidents happened to the daily workers belonging to small construction site. Most of the causes were not operated properly due to lack of safety equipment, inadequacy of arrangement and wearing, and low performance of safety equipment. In order to prevent and reduce the falling accidents, it is important to educate the daily workers of small construction site, arrange the workplace, and check the wearing of personal safety equipment and device.

Topic Modeling Analysis of Social Media Marketing using BERTopic and LDA

  • YANG, Woo-Ryeong;YANG, Hoe-Chang
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.9
    • /
    • pp.37-50
    • /
    • 2022
  • Purpose: The purpose of this study is to explore and compare research trends in Korea and overseas academic papers on social media marketing, and to present new academic perspectives for the future direction in Korea. Research design, data and methodology: We used English abstract of research paper (Korea's: 1,349, overseas': 5,036) for word frequency analysis, topic modeling, and trend analysis for each topic. Results: The results of word frequency and co-occurrence frequency analysis showed that Korea researches focused on the experiential values of users, and overseas researches focused on platforms and content. Next, 13 topics and 12 topics for Korea and overseas researches were derived from topic modeling. And, trend analysis showed that Korean studies were different from overseas in applying marketing methods to specific industries and they were interested in the short-term performance of social media marketing. Conclusions: We found that the long-term strategies of social media marketing and academic interest in the overall industry will necessary in the future researches. Also, data mining techniques will necessary to generate more general results by quantifying various phenomena in reality. Finally, we expected that continuous and various academic approaches for volatile social media is effective to derive practical implications.

Is Text Mining on Trade Claim Studies Applicable? Focused on Chinese Cases of Arbitration and Litigation Applying the CISG

  • Yu, Cheon;Choi, DongOh;Hwang, Yun-Seop
    • Journal of Korea Trade
    • /
    • v.24 no.8
    • /
    • pp.171-188
    • /
    • 2020
  • Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

An Analysis of Key Elements for FinTech Companies Based on Text Mining: From the User's Review (텍스트 마이닝 기반의 자산관리 핀테크 기업 핵심 요소 분석: 사용자 리뷰를 바탕으로)

  • Son, Aelin;Shin, Wangsoo;Lee, Zoonky
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.137-151
    • /
    • 2020
  • Purpose Domestic asset management fintech companies are expected to grow by leaps and bounds along with the implementation of the "Data bills." Contrary to the market fever, however, academic research is insufficient. Therefore, we want to analyze user reviews of asset management fintech companies that are expected to grow significantly in the future to derive strengths and complementary points of services that have been provided, and analyze key elements of asset management fintech companies. Design/methodology/approach To analyze large amounts of review text data, this study applied text mining techniques. Bank Salad and Toss, domestic asset management application services, were selected for the study. To get the data, app reviews were crawled in the online app store and preprocessed using natural language processing techniques. Topic Modeling and Aspect-Sentiment Analysis were used as analysis methods. Findings According to the analysis results, this study was able to derive the elements that asset management fintech companies should have. As a result of Topic Modeling, 7 topics were derived from Bank Salad and Toss respectively. As a result, topics related to function and usage and topics on stability and marketing were extracted. Sentiment Analysis showed that users responded positively to function-related topics, but negatively to usage-related topics and stability topics. Through this, we were able to extract the key elements needed for asset management fintech companies.

Analysis of Aviation Safety Management Issues using Text Mining (Text Mining 기법을 활용한 항공안전관리 이슈 분석)

  • Moonjin Kwon;Jang Ryong Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.4
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, a total of 2,584 domestic research papers with the keywords "Aviation Safety" and "Aviation Accidents" were subjected to Text Mining analysis. Various text mining techniques, including keyword frequency analysis, word correlation analysis, network analysis, and topic modeling, were applied to examine the research trends in the field of aviation safety. The results revealed a significant increase in research using the keyword "Aviation Safety" since 2015, with over 300 papers published annually. Through keyword frequency analysis, it was observed that "Aircraft" was the most frequently mentioned term, followed by "Drones" and "Unmanned Aircraft." Phi coefficients were calculated for words closely related to "Aircraft," "Aviation," "Drones," and "Safety." Furthermore, topic modeling was employed to identify 12 distinct topics in the field of aviation safety and aviation accidents, allowing for an in-depth exploration of research trends.

Investigations on Techniques and Applications of Text Analytics (텍스트 분석 기술 및 활용 동향)

  • Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.471-492
    • /
    • 2017
  • The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.

Examining Suicide Tendency Social Media Texts by Deep Learning and Topic Modeling Techniques (딥러닝 및 토픽모델링 기법을 활용한 소셜 미디어의 자살 경향 문헌 판별 및 분석)

  • Ko, Young Soo;Lee, Ju Hee;Song, Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.3
    • /
    • pp.247-264
    • /
    • 2021
  • This study aims to create a deep learning-based classification model to classify suicide tendency by suicide corpus constructed for the present study. Also, to analyze suicide factors, the study classified suicide tendency corpus into detailed topics by using topic modeling, an analysis technique that automatically extracts topics. For this purpose, 2,011 documents of the suicide-related corpus collected from social media naver knowledge iN were directly annotated into suicide-tendency documents or non-suicide-tendency documents based on suicide prevention education manual issued by the Central Suicide Prevention Center, and we also conducted the deep learning model(LSTM, BERT, ELECTRA) performance evaluation based on the classification model, using annotated corpus data. In addition, one of the topic modeling techniques, LDA identified suicide factors by classifying thematic literature, and co-word analysis and visualization were conducted to analyze the factors in-depth.

A Ghost in the Shell? Influences of AI Features on Product Evaluations of Smart Speakers with Customer Reviews (A Ghost in the Shell? 고객 리뷰를 통한 스마트 스피커의 인공지능 속성이 평가에 미치는 영향 연구)

  • Lee, Hong Joo
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.191-205
    • /
    • 2018
  • With the advancement of artificial intelligence (AI) techniques, many consumer products have adopted AI features for providing proactive and personalized services to customers. One of the most prominent products featuring AI techniques is a smart speaker. The fundamental of smart speaker is a portable wireless Internet connecting speaker which already have existed in a consumer market. By applying AI techniques, smart speakers can recognize human voices and communicate with them. In addition, they can control other connecting devices and provide offline services. The goal of this study is to identify the impact of AI techniques for customer rating to the products. We compared customer reviews of other portable speakers without AI features and those of a smart speaker. Amazon echo is used for a smart speaker and JBL Flip 4 Bluetooth Speaker and Ultimate Ears BOOM 2 Panther Limited Edition are used for the comparison. These products are in the same price range ($50~100) and selected as featured products in Amazon.com. All reviews for the products were collected and common words for all products and unique words of the smart speaker were identified. Information gain values were calculated to identify the influences of words to be rated as positive or negative. Positive and negative words in all the products or in Amazon echo were identified, too. Topic modeling was applied to the customer reviews on Amazon echo and the importance of each topic were measured by summating information gain values of each topic. This study provides a way of identifying customer responses on the AI feature and measuring the importance of the feature among diverse features of the products.

User Experience Evaluation of Menstrual Cycle Measurement Application Using Text Mining Analysis Techniques (텍스트 마이닝 분석 기법을 활용한 월경주기측정 애플리케이션 사용자 경험 평가)

  • Wookyung Jeong;Donghee Shin
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.1-31
    • /
    • 2023
  • This study conducted user experience evaluation by introducing various text mining techniques along with topic modeling techniques for mobile menstrual cycle measurement applications that are closely related to women's health and analyzed the results by combining them with a honeycomb model. To evaluate the user experience revealed in the menstrual cycle measurement application review, 47,117 Korean reviews of the menstrual cycle measurement application were collected. Topic modeling analysis was conducted to confirm the overall discourse on the user experience revealed in the review, and text network analysis was conducted to confirm the specific experience of each topic. In addition, sentimental analysis was conducted to understand the emotional experience of users. Based on this, the development strategy of the menstrual cycle measurement application was presented in terms of accuracy, design, monitoring, data management, and user management. As a result of the study, it was confirmed that the accuracy and monitoring function of the menstrual cycle measurement of the application should be improved, and it was observed that various design attempts were required. In addition, the necessity of supplementing personal information and the user's biometric data management method was also confirmed. By exploring the user experience (UX) of the menstrual cycle measurement application in-depth, this study revealed various factors experienced by users and suggested practical improvements to provide a better experience. It is also significant in that it presents a methodology by combines topic modeling and text network analysis techniques so that researchers can closely grasp vast amounts of review data in the process of evaluating user experiences.