• 제목/요약/키워드: topic modeling analysis

검색결과 694건 처리시간 0.03초

다이나믹 토픽모델링 및 네트워크 분석 기법을 통한 블록체인 관련 국내 연구 동향 분석 (Analyzing Research Trends in Blockchain Studies in South Korea Using Dynamic Topic Modeling and Network Analysis)

  • 김동훈;오찬희;주영준
    • 정보관리학회지
    • /
    • 제38권3호
    • /
    • pp.23-39
    • /
    • 2021
  • 본 연구에서는 국내 블록체인 연구의 전반적인 동향 및 시간에 따른 주제를 파악하기 위해 대학 및 기관 협력 네트워크 분석, 키워드 동시출현 네트워크 분석, 다이나믹 토픽모델링 기법을 활용한 시계열 주제 분석을 실시하였다. 대학 및 기관 협력 네트워크 분석 결과, 숭실대학교, 순천향대학교, 고려대학교, 한국과학기술원 등이 블록체인 연구의 주요 대학으로 나타났으며 대학 이외의 기관으로는 국방부, 한국철도기술연구원, 삼일회계법인, 한국전자통신연구원 등이 주요 연구기관으로 나타났다. 키워드 동시출현 네트워크 분석 결과, 가상자산(암호화폐, 비트코인, 이더리움, 가상화폐), 블록체인 기술(분산원장, 분산원장기술), 금융(스마트계약), 정보보안(보안, 프라이버시, 개인정보) 등에 대한 키워드들이 주요하게 나타났으며, 모든 네트워크 중심성 지표에서 스마트계약이 가장 높은 수치를 나타내어 주요한 주제임을 확인할 수 있었다. 마지막으로 시계열 주제분석 결과, 블록체인기술, 블록체인생태계, 블록체인 적용분야1(무역, 온라인투표, 부동산), 블록체인 적용분야2(식품, 관광, 유통, 미디어), 블록체인 적용분야3(경제, 금융) 등 다섯 개의 주요 주제들을 도출하였으며, 각 주제별 대표 키워드들의 비율변화를 통해 주제별 변화를 관찰할 수 있었다. 본 연구는 기존의 국내 블록체인 연구동향 연구들과 크게 세 가지 관점(데이터, 방법론, 해석)에서 차이점을 나타내고 있다. 1) 최근 2년 사이 급증한 블록체인 연구를 포함하였고, 2) 대학 및 기관 네트워크 분석과 시계열 주제분석이라는 새로운 분석기법 및 연구방법을 활용하였으며, 3) 이를 통해 블록체인 연구를 주도하는 대학 및 기관을 식별하고 국내 블록체인 연구 트렌드를 파악하였다. 끝으로, 연구결과가 블록체인 관련 연구 협력 및 정책 수립과 관련 기술 개발 계획에 활용될 수 있다는 점에서 실질적인 함의를 시사한다.

지방자치단체의 스마트시티 조례 분석: 토픽모델링을 활용하여 (Analysis of Municipal Ordinances for Smart Cities of Municipal Governments: Using Topic Modeling)

  • 서형준
    • 정보화정책
    • /
    • 제30권1호
    • /
    • pp.41-66
    • /
    • 2023
  • 본 연구는 72개 지자체의 74개 스마트시티 조례를 대상으로, 지자체 스마트시티 조례의 방향성을 확인하고자 토픽모델링을 활용하여 조례의 주요 키워드를 확인하고, 조례의 키워드에 따른 주제분류를 진행하였다. 분석결과 주요 키워드는 스마트도시위원회의 구성 및 운영에 관한 키워드가 조례 내에서 높은 빈도를 보였다. 조례에 대한 토픽모델링 Latent Dirichlet Allocation(LDA) 분석결과 관련 키워드에 따라 총 8개의 주제로 분류할 수 있었다. 구체적으로 주제-1(스마트시티 추진사항 보안), 주제-2(스마트시티 산업진흥), 주제-3(스마트시티 주민협의체 구성), 주제-4(스마트시티 추진체계 지원), 주제-5(개인정보 관리), 주제-6(스마트시티 데이터 활용), 주제-7(지능정보화 행정구현), 주제-8(스마트시티 홍보) 등으로, 주제의 비중은 주제-6, 주제-4, 주제-1 등의 순으로 나타났다. 권역별 주제분류는 수도권은 주제-5, 주제-6, 주제-8 의 비중이 높았고, 지방권은 주제-2, 주제-3, 주제-4의 비중이 높아 수도권은 스마트시티의 실질 운영 관련 주제가 높았고, 지방권은 스마트시티 추진을 위한 준비단계 관련 주제 비중이 높았다.

빅데이터 연구동향 분석: 토픽 모델링을 중심으로 (Research Trends Analysis of Big Data: Focused on the Topic Modeling)

  • 박종순;김창식
    • 디지털산업정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2019
  • The objective of this study is to examine the trends in big data. Research abstracts were extracted from 4,019 articles, published between 1995 and 2018, on Web of Science and were analyzed using topic modeling and time series analysis. The 20 single-term topics that appeared most frequently were as follows: model, technology, algorithm, problem, performance, network, framework, analytics, management, process, value, user, knowledge, dataset, resource, service, cloud, storage, business, and health. The 20 multi-term topics were as follows: sense technology architecture (T10), decision system (T18), classification algorithm (T03), data analytics (T17), system performance (T09), data science (T06), distribution method (T20), service dataset (T19), network communication (T05), customer & business (T16), cloud computing (T02), health care (T14), smart city (T11), patient & disease (T04), privacy & security (T08), research design (T01), social media (T12), student & education (T13), energy consumption (T07), supply chain management (T15). The time series data indicated that the 40 single-term topics and multi-term topics were hot topics. This study provides suggestions for future research.

Analyzing Technological Trends of Smart Factory using Topic Modeling

  • Hussain, Adnan;Kim, Chulhyun;Battsengel, Ganchimeg;Jeon, Jeonghwan
    • Asian Journal of Innovation and Policy
    • /
    • 제10권3호
    • /
    • pp.380-403
    • /
    • 2021
  • Recently, smart factories have gained significant importance since the development of the fourth industrial revolution and the rise of global industrial competition. Therefore, the industries' survival to meet the global market trends requires accurate technological planning. Although, different works are available to investigate forecasting technologies and their influence on the smart factory. However, little significant work is available yet on the analysis of technological trends concerning the smart factory, which is the core focus herein. This work was performed to analyze the technological trends of the smart factory, followed by a detailed investigation of recent research hotspots/frontiers in the field. A well-known topic modeling technique, namely Latent Dirichlet Allocation (LDA), was employed for this study described above. The technological trends were further strengthened with the in-depth analysis of a smart factory-based case study. The findings produced the technological trends which possess significant potential in determining the technological strategies. Moreover, the results of this work may be helpful for researchers and enterprises in forecasting and planning future technological evolution.

Analysis of Reviews from Metaverse Platform Users Based on Topic Modeling

  • Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • 제31권3호
    • /
    • pp.93-104
    • /
    • 2024
  • This study conducts an in-depth analysis of user reviews from three leading metaverse platforms - Minecraft, Roblox, and Zepeto - using advanced topic modeling techniques to uncover key factors for business success. By examining a substantial dataset of user feedback, we identified and categorized the main themes and concerns expressed by users. Our analysis revealed that common issues across all platforms include technical functionality problems, user engagement and interest, payment concerns, and connection difficulties. Specifically, Minecraft users highlighted the importance of adventure and creativity, Roblox users expressed significant concerns about security and fraud, and Zepeto users focused heavily on the fairness of the in-game economy. The findings suggest that for metaverse platforms to achieve sustained success, they must prioritize the resolution of technical issues, enhance features that foster user engagement, ensure reliable connectivity, and address platform-specific concerns such as security for Roblox and payment fairness for Zepeto. These insights provide valuable guidance for developers and business strategists, emphasizing the need for robust technical infrastructure, engaging and diverse content, seamless user access, and transparent and fair economic systems. By addressing these key areas, metaverse platforms can improve user satisfaction, build a loyal user base, and secure long-term success in an increasingly competitive market.

Is Text Mining on Trade Claim Studies Applicable? Focused on Chinese Cases of Arbitration and Litigation Applying the CISG

  • Yu, Cheon;Choi, DongOh;Hwang, Yun-Seop
    • Journal of Korea Trade
    • /
    • 제24권8호
    • /
    • pp.171-188
    • /
    • 2020
  • Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.

기업근로자 경력성공 인식의 다차원성과 차이: 토픽모델링의 적용 (Differences and Multi-dimensionality of the Perception of Career Success among Korean Employees: A Topic Modeling Approach)

  • 이재은;채충일
    • 한국콘텐츠학회논문지
    • /
    • 제19권6호
    • /
    • pp.58-71
    • /
    • 2019
  • 이 연구는 우리나라 기업근로자가 인식하는 경력성공의 다차원성과 개인특성에 따른 차이를 토픽모델링 방법을 적용하여 탐색하고자 하는 목적으로 수행되었다. 연구목적을 달성하기 위해 경력성공에 대한 인식을 개방형 설문을 통해 수집하였으며 126명의 기업근로자들의 응답자료를 바탕으로 R 프로그램을 활용하여 분석하였다. 분석결과 한국 근로자의 경력성공 인식에 대한 5가지 토픽이 도출되었다. 구체적으로, 토픽1은 사회적으로 인정받는 직장에 다니는 것(사회적 인정), 토픽 2는 조직 내에서 자신의 업무에 충실하며 견디는 것(조직 내 근속), 토픽 3은 자기 분야에 지식과 노하우를 갖고 전문성을 갖는 것(전문성), 토픽 4는 일한 만큼 경제적 보상과 성과를 얻는 것(경제적 보상), 토픽 5는 일을 통해 보람과 성취감 같은 개인적 의미를 추구하는 것(개인적 의미 추구)으로 나타났다. 또한, 성별, 연령, 학력에 따른 각 토픽별 발현비율 차이가 확인되었다. 이 연구를 통해 경력성공 인식의 다차원성과 개인특성에 따른 경력성공 인식 차이를 확인하였으며, 개방형 설문자료와 같은 비정형 데이터 분석에서 토픽모델링 방법을 활용가능성을 제시하였다.

토픽모델링과 시계열회귀분석을 활용한 정보시스템분야 연구동향 분석 (Investigation of Research Trends in Information Systems Domain Using Topic Modeling and Time Series Regression Analysis)

  • 김창식;최수정;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권6호
    • /
    • pp.1143-1150
    • /
    • 2017
  • 본 연구의 목적은 국내에서 2002년부터 2016년까지 출판된, 대표적인 정보시스템분야 저널의 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 Asia Pacific Journal of Information Systems, Information Systems Review, The Journal of Information Systems에 출판된 논문의 초록 1,245편을 분석 하였다. 본 연구에서는 최근 중요하게 다루어지는 토픽모델링과 시계열회귀분석 기법을 활용하였다. 토픽모델링 분석결과, 20개의 토픽이 도출되었고 "시스템구축", "혁신역량", 및 "고객충성도" 등의 순으로 확인되었다. 둘째, 시계열회귀분석 결과, 상승 추세를 나타내는 토픽으로는 "고객충성도", "소통혁신", "정보보호", 및 "개인정보보호" 가 나타났고, 하락 추세를 나타나는 토픽으로는 "시스템구축" 및 "웹사이트" 가 도출되었다.

토픽모델링을 이용한 국내 방사선 학술연구 트렌드 분석 (A Trend Analysis of Radiological Research in Korea using Topic Modeling)

  • 홍동희
    • 한국방사선학회논문지
    • /
    • 제16권3호
    • /
    • pp.343-349
    • /
    • 2022
  • 토픽 모델링을 활용하여 1989년부터 2022년까지 출판된 방사선을 주제로 한 논문을 파악하고 주제들 간의 관련성과 비중을 분석하고자 한다. 본 연구는 방사선 분야의 연구 활성화에 기여하기 위하여 2022년 최근까지 출판된 논문 717편을 대상으로 국문제목에서 도출된 토픽들을 분석하였다. 텍스트마이닝을 통해 연구의 주제 분포에 대한 전반적 연구 동향을 분석하였으며, 토픽모델링을 통해 5가지 주제를 도출해냈다. 첫째, 분석 대상 논문 중 키워드 중심으로 총 논문 717편의 연구에서 핵심어를 전처리 과정을 거쳐 최종적으로 선정된 단어는 총 1675개의 단어를 빈도 분석하였다. 둘째, 5개 토픽에 대하여 구성단어의 연관성을 중심으로 토픽을 분석한 결과 방사선, 영상, CT 임상분야에서 영상의 화질을 떨어뜨리지 않는 범위에서 선량을 최소화 하는데 연구가 주를 이루고 있음을 알 수 있었다. 또한, MRI 분야는 다양한 연구가 주를 이루었고 초음파는 다양한 부위의 질환 분석이 연구가 활발하게 시도되고 있음을 알 수 있었다.

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.197-209
    • /
    • 2024
  • 본 연구의 목적은 국내 인공지능 교육의 최근 연구 동향을 분석하여 향후 인공지능 교육의 방향성을 모색하는 것이다. 2016년부터 2023년 11월까지 RISS(Research Information Sharing Service)에 게재된 논문 중 인공지능 교육 관련 논문 697편을 대상으로 워드 클라우드(Word Cloud)와 LDA 토픽 모델링(Latent Dirichlet Allocation Topic Modeling) 기법을 활용하여 분석하였다. 분석결과, 주요 토픽으로는 생성형 인공지능 활용 교육, 인공지능 윤리 교육, 인공지능 융합 교육, 인공지능 활용에 대한 교사 인식과 역할, 대학 교육에서 인공지능 리터러시(Literacy) 개발, 인공지능 기반 교육과 연구 방향으로 여섯 가지가 도출되었다. 분석결과를 토대로, (1) 다양한 교과목에 생성형 인공지능 활용 확대, (2) 인공지능 사용을 위한 윤리적 지침, (3) 인공지능 교육의 장기적 영향 평가, (4) 고등교육에서 교사의 인공지능 활용 역량, (5) 대학의 인공지능 교육과정 다양화, (6) 인공지능 연구 추이 분석 및 교육 플랫폼(Platform) 개발 등을 제안하였다.