The topic of anomaly detection is one of the emerging research themes in computer vision, computer interaction, video analysis and monitoring. Observers focus attention on behaviors that vary in the magnitude or direction of the motion and behave differently in rules of motion with other objects. In this paper, we use this information and propose a system that detects abnormal behavior by using simple features extracted by optical flow. Our system can be applied in real life. Experimental results show high performance in detecting abnormal behavior in various videos.
Many researches have been done in insurance fraud as the amount and frequency of insurance fraud have been increasing continuously. In particular, the development of insurance fraud detection system using large database management techniques including data mining or link analysis based on visual method have been the main research topic in insurance fraud. However, this kinds of detection system were very ineffective to find unintentional insurance fraud happened by accident even though it was so good to find intentional and organized crime insurance fraud. Therefore, this research suggests insurance fraud as an ethical decision making and applies TPB(Theory of Planned Behavior) for the finding of reasons and prevention strategies of unintentional insurance fraud happened by accident. The results of research show that TPB is very appropriate model to explain the behavior of insurance fraud and that insurance agents force to do insurance fraud as affecting perceived behavior control. Therefore, education and pubic relations for insurance fraud are very effective for preventing insurance fraud and developing insurance service industry.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.345-359
/
2017
Optical Character Recognition (OCR) that has been a main research topic of computer vision and artificial intelligence now extend its applications to detection of text area from video or image contents taken by camera devices and retrieval of text information from the area. This paper aims to implement a binarization algorithm that removes user intervention and provides robust performance to outdoor lights by using TopHat algorithm and channel transformation technique. In this study, we particularly concentrate on text information of outdoor signboards and validate our proposed technique using those data.
Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.
Ship detection in synthetic aperture radar(SAR)imagery has long been an active research topic and has many applications. In this paper,we propose an efficient method for detecting ships from SAR imagery using filtering. This method exploits ship masking using a median filter that considers maximum ship sizes and detects ships from the reference image, to which a Non-Local means (NL-means) filter is applied for speckle de-noising and a differential image created from the difference between the reference image and the median filtered image. As the pixels of the ship in the SAR imagery have sufficiently higher values than the surrounding sea, the ship detection process is composed primarily of filtering based on this characteristic. The performance test for this method is validated using KOMPSAT-5 (Korea Multi-Purpose Satellite-5) SAR imagery. According to the accuracy assessment, the overall accuracy of the region that does not include land is 76.79%, and user accuracy is 71.31%. It is demonstrated that the proposed detection method is suitable to detect ships in SAR imagery and enables us to detect ships more easily and efficiently.
Recently, the safety in vehicle also has become a hot topic as self-driving car is developed. In passive safety systems such as airbags and seat belts, the system is being changed into an active system that actively grasps the status and behavior of the passengers including the driver to mitigate the risk. Furthermore, it is expected that it will be possible to provide customized services such as seat deformation, air conditioning operation and D.W.D (Distraction While Driving) warning suitable for the passenger by using occupant information. In this paper, we propose robust vehicle occupant detection algorithm based on RGB-Depth-Thermal camera for obtaining the passengers information. The RGB-Depth-Thermal camera sensor system was configured to be robust against various environment. Also, one of the deep learning algorithms, OpenPose, was used for occupant detection. This algorithm is advantageous not only for RGB image but also for thermal image even using existing learned model. The algorithm will be supplemented to acquire high level information such as passenger attitude detection and face recognition mentioned in the introduction and provide customized active convenience service.
Infrared (IR) target detection is one of the key technologies in Automatic Target Detection/Recognition (ATD/R) for military applications. However, IR sensors have limitations due to the weather sensitivity and atmospheric effects. In recent years, sensor information fusion study is an active research topic to overcome these limitations. SAR sensor is adopted to sensor fusion, because SAR is robust to various weather conditions. In this paper, a Boolean Map Visual Theory-Morphology (BMVT-M) method is proposed to detect targets in SAR and IR images. Moreover, we suggest the IR and SAR image registration and decision level fusion algorithm. The experimental results using OKTAL-SE synthetic images validate the feasibility of sensor fusion-based target detection.
Purpose The purpose of this study is to analyze the sentiment responses of the general public to non-face-to-face work using text mining methodology. As the number of non-face-to-face complaints is increasing over time, it is difficult to review and analyze in traditional methods such as surveys, and there is a limit to reflect real-time issues. Approach This study has proposed a method of the research model, first by collecting and cleansing the data related to non-face-to-face work among tweets posted on Twitter. Second, topics and keywords are extracted from tweets using LDA(Latent Dirichlet Allocation), a topic modeling technique, and changes for each section are analyzed through DTM(Dynamic Topic Modeling). Third, the complaints of non-face-to-face work are analyzed through the classification of positive and negative polarity in the COVID-19 section. Findings As a result of analyzing 1.54 million tweets related to non-face-to-face work, the number of IDs using non-face-to-face work-related words increased 7.2 times and the number of tweets increased 4.8 times after COVID-19. The top frequently used words related to non-face-to-face work appeared in the order of remote jobs, cybersecurity, technical jobs, productivity, and software. The words that have increased after the COVID-19 were concerned about lockdown and dismissal, and business transformation and also mentioned as to secure business continuity and virtual workplace. New Normal was newly mentioned as a new standard. Negative opinions found to be increased in the early stages of COVID-19 from 34% to 43%, and then stabilized again to 36% through non-face-to-face work sentiment analysis. The complaints were, policies such as strengthening cybersecurity, activating communication to improve work productivity, and diversifying work spaces.
소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.
본 연구에서는 미리 구축해 놓은 학습데이터 없이도 입력된 작문이 주어진 작문 주제에 적합한 내용인지 아닌지를 자동으로 판단할 수 있는 방법을 제안한다. ConceptNet은 다양한 종류의 문서에서 추출한 자연언어 문장들로부터 구축된 그래프 형태의 지식베이스이다. 본 연구에서는 작문 주제에 해당하는 작문 프롬프트(essay prompt)와 ConceptNet만을 이용하여 문서의 주제-이탈 여부를 판별하는 방법을 제안한다. ConceptNet에서 두 개념간의 최단 경로를 찾고 이에 대한 의미 유사도를 계산하는 방법을 제안한다. 이를 이용하여 작문 프롬프트와 수험생 작문 내용을 ConceptNet의 개념들로 매핑하고 이 개념들 사이의 의미 유사도를 계산하여 작문 프롬프트와 수험생 작문 사이의 주제 부합 여부를 판단한다. 8개의 작문 시험을 수행하여 얻은 수험생 작문 데이터에 대하여 평가를 수행한 결과 기존의 연구에 비해 좋은 성능을 얻을 수 있었다. ConceptNet을 활용하면 유의미한 단순 추론이 가능하기 때문에 본 연구에서 제안한 방법은 추론을 요하는 작문 문제에도 적용 가능함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.