• Title/Summary/Keyword: topic cluster

Search Result 79, Processing Time 0.025 seconds

Effects of Korean Syllable Structure on English Pronunciation

  • Lee, Mi-Hyun;Ryu, Hee-Kwan
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2000년도 7월 학술대회지
    • /
    • pp.364-364
    • /
    • 2000
  • It has been widely discussed in phonology that syllable structure of mother tongue influences one's acquisition of foreign language. However, the topic was hardly examined experimentally. So, we investigated effects of Korean syllable structure when Korean speakers pronounce English words, especially focusing on consonant strings that are not allowed in Korean. In the experiment, all the subjects are divided into 3 groups, that is, native, experienced, and inexperienced speakers. Native group consists of 1 male English native speaker. Experienced and inexperienced are each composed of 3 male Korean speakers. These 2 groups are divided by the length of residence in the country using English as a native language. 41 mono-syllable words are prepared considering the position (onset vs. coda), characteristic (stops, affricates, fricatives), and number of consonant. Then, the length of the consonant cluster is measured. To eliminate tempo effect, the measured length is normalized using the length of the word 'say' in the carrier sentence. Measurement of consonant cluster is the relative time period between the initiation of energy (onset I coda) which is acoustically representative of noise (consonant portion) and voicing. bar (vowel portion) in a syllable. Statistical method is used to estimate the differences among 3 groups. For each word, analysis of variance (ANDY A) and Post Hoc tests are carried out.

  • PDF

"비급천금요방(備急千金要方)" 침구편(鍼灸篇)으로 구성한 경혈(經穴) 네트워크에 공간적 위치 변수가 미치는 영향 (Spatial Influence on Acupoints Network Derived from the Chapter on Acupuncture & Moxibustion in "Beijiqianjinyaofang")

  • 김민욱;양승범;안성훈;손인철;김재효
    • Korean Journal of Acupuncture
    • /
    • 제29권3호
    • /
    • pp.431-440
    • /
    • 2012
  • Objectives : Recently, network science is very popular topic in various scientific fields and many studies have reported that it gives meaningful results on studying characteristics of a complex system. In this study, based on network theory, we made acupoints network using data of combined acupoints which appeared at "Beijiqianjinyaofang". We focused to find out the distinctive roles of remote and local combinations on the network. Furthermore, we aimed to identify the possibility of numerical and quantitative application to acupuncture researches. Methods : Based on examples of combined acupoints in "Beijiqianjinyaofang", the network consisted of 291 nodes and 2,431 links. The spatial distances between combined acupoints were calculated by the human dummy model. We removed the links step by step for the three cases - remote, local, and random cases, and observed the characteristic changes by calculating path lengths, similarity indices, and clustering coefficients. Also cluster analysis was carried out. Results : The network had a small number of remote links, and a large number of local links. These two links had the distinct characteristics. Whereas the local links formed a cluster of nearby nodes, remote links played a role to increase the correlation between the clusters. Conclusions : These results suggest that acupoints network increases the connectivity between the distal part and the trunk of human body, and enables various combinations of the acupoints. This finding conclusively showed that mechanism of combined acupoints could be interpreted meaningfully by applying network theory in acupuncture researches.

제품, 서비스, 융합제품서비스의 소비자 니즈 비교 분석 :아마존 온라인 리뷰를 중심으로 (Comparative Analysis of Consumer Needs for Products, Service, and Integrated Product Service : Focusing on Amazon Online Reviews)

  • 김성범
    • 한국콘텐츠학회논문지
    • /
    • 제20권7호
    • /
    • pp.316-330
    • /
    • 2020
  • 이 연구는 텍스트 마이닝을 사용하여 하드웨어 제품에 대한 리뷰, 서비스 상품에 대한 리뷰, ICT분야의 하드웨어와 클라우드 서비스가 융합된 형태의 상품을 대상으로 소비자 리뷰를 분석한다. 분석을 위해 각 리뷰의 키워드를 도출하고 토픽 도출에 사용된 단어의 차별성을 찾는다. 마지막으로 전체 리뷰를 대상으로 군집분석을 실시하고 각각의 상품군의 리뷰가 어떤 군집에 속하는지를 검토한다. 이 연구를 통해서 각 상품의 유형별로 특화되어 사용된 핵심어를 도출하였고, 토픽모델링을 사용하여 제품과 서비스의 특성을 표현하는 주제를 도출하였다. 서비스 상품 리뷰에서는 공급자의 우수성을 의미하는 professional, technician과 같은 핵심어를 도출하였고, 융합제품서비스상품으로서 아마존 에코 리뷰에서는 favorite, fine, fun, nice, smart, unlimited, useful 등의 긍정적 의미의 형용사를 도출하였다. 군집분석을 사용하여 전체 리뷰를 분석하였고, 3개의 상품 유형별 리뷰가 배타적으로 서로 다른 각각의 군집에 속하는 결과를 발견하였다. 이 연구는 소비자의 니즈(needs)를 상품의 유형별로 온라인 리뷰를 이용하여 차이점을 분석하였고 실무적으로 상품 유형에 기반한 상품기획과 마케팅 프로모션 차별화의 필요성을 제시하였다.

Application of Urban Computing to Explore Living Environment Characteristics in Seoul : Integration of S-Dot Sensor and Urban Data

  • Daehwan Kim;Woomin Nam;Keon Chul Park
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.65-76
    • /
    • 2023
  • This paper identifies the aspects of living environment elements (PM2.5, PM10, Noise) throughout Seoul and the urban characteristics that affect them by utilizing the big data of the S-Dot sensors in Seoul, which has recently become a hot topic. In other words, it proposes a big data based urban computing research methodology and research direction to confirm the relationship between urban characteristics and living environments that directly affect citizens. The temporal range is from 2020 to 2021, which is the available range of time series data for S-Dot sensors, and the spatial range is throughout Seoul by 500mX500m GRID. First of all, as part of analyzing specific living environment patterns, simple trends through EDA are identified, and cluster analysis is conducted based on the trends. After that, in order to derive specific urban planning factors of each cluster, basic statistical analysis such as ANOVA, OLS and MNL analysis were conducted to confirm more specific characteristics. As a result of this study, cluster patterns of environment elements(PM2.5, PM10, Noise) and urban factors that affect them are identified, and there are areas with relatively high or low long-term living environment values compared to other regions. The results of this study are believed to be a reference for urban planning management measures for vulnerable areas of living environment, and it is expected to be an exploratory study that can provide directions to urban computing field, especially related to environmental data in the future.

텍스트 마이닝을 통한 건설공사 공문 잠재적 리스크 유형 분석 (Analysis of Potential Construction Risk Types in Formal Documents Using Text Mining)

  • 엄세호;차기춘;박선규;박승희;박종호
    • 대한토목학회논문집
    • /
    • 제43권1호
    • /
    • pp.91-98
    • /
    • 2023
  • 건설프로젝트에서 발생되는 리스크는 공기지연 및 비용증가에 큰 영향을 끼치기 때문에 다양한 리스크를 파악하기 위한 노력이 이루어지고 있다. 그러나 시공단계의 리스크 분석은 공종 및 수행단계에 국한되거나, 경험 의존적 의사결정이 주로 수행되고 있다. 데이터 기반의 분석도 일부 사례에 적용되고 있을 뿐이다. 따라서 본 연구에서는 시공사 또는 발주처에 중요한 요인들이 포함되어 있을 것으로 판단되는 수발신공문을 대상으로 군집분석과 Word2Vec 알고리즘을 적용하였다. 군집분석을 통해 6개 유형으로 1차 분류를 수행하였으며, Word2Vec을 통해 157개의 공문 발생 유형을 도출하였다. 도출된 연관어의 속성별 분석을 위하여 새로운 5개의 범주를 적용하였으며, 이를 통해 공문 발생 유형이 잠재적인 건설 리스크 요인으로 발전 가능한지 검토하였다. 텍스트 마이닝을 통한 3단계의 공문 발생 유형 분석 결과는 건설현장의 공정관리를 위한 기초 자료로써 도움 될 것으로 판단된다.

디지털시대 춘천지역 지식기반산업의 발전방안에 관한 연구 (A Study on the Developing Strategies of Knowledge based Industry in ChunChon Area for the Digital Age.)

  • 김치호;라공우;민태홍
    • 통상정보연구
    • /
    • 제8권3호
    • /
    • pp.3-21
    • /
    • 2006
  • This study aims to explore the developing strategies of knowledge based industry in ChunChon Area. This study suggests several strategies for promoting local development in Chunchon Area as follows ; first, building of local innovation system in chunchon area and convergence and diffusion of knowledge based industries. second, making of industrial environment suitable to developing knowledge based industries. third, the establishment of overall industrial supporting systems. fourth, expansion of industrial infra and prevention of the brain drain. fifth, transformation of industrial complex into innovation clusters. The result of this study will be useful for the chief executives officers to make more rational decision making for industrial developing strategies is related to the Knowledge based Industries. The paper also strives to provoke debate in this area with to encouraging further research on the topic.

  • PDF

계층적 클러스터링에서 분류 대표어 선정에 관한 연구 (A Study on Cluster Topic Selection in Hierarchical Clustering)

  • 이상선;이신원;안동언;정성종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.669-672
    • /
    • 2004
  • 정보의 양이 많아지면서 정보 검색 시스템에 검색 결과를 자동으로 구조화하는 계층적 클러스터링을 적용하는 시도가 늘고 있다. 계층적 클러스터링은 문서 간의 유사도를 통해 클러스터를 계층 구조로 만들어 검색 성능을 높이고 결과를 사용자에게 이해하기 쉽게 보여준다. 계층 구조는 검색 결과를 요약하는 것이기 때문에 클러스터의 내용을 효과적으로 함축할 수 있는 대표어의 선정이 중요하다. 각 클러스터의 대표어를 선정하기 위해 대표어에 명사인 단어만 추출하고 상위 클러스터 대표어에 사용된 단어는 하위 클러스터에 사용하지 않는 방법을 적용하여 대표어의 질을 높였다.

  • PDF

Variance estimation of a double expanded estimator for two-phase sampling

  • Mingue Park
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.403-410
    • /
    • 2023
  • Two-Phase sampling, which was first introduced by Neyman (1938), has various applications in different forms. Variance estimation for two-phase sampling has been an important research topic because conventional variance estimators used in most softwares are not working. In this paper, we considered a variance estimation for two-phase sampling in which stratified two-stage cluster sampling designs are used in both phases. By defining a conditionally unbiased estimator of an approximate variance estimator, which is calculable when all elements in the first phase sample are observed, we propose an explicit form of variance estimator of the double expanded estimator for a two-phase sample. A small simulation study shows the proposed variance estimator has a negligible bias with small variance. The suggested variance estimator is also applicable to other linear estimators of the population total or mean if appropriate residuals are defined.

이질적 웹 서버 클러스터 환경에서 효율적인 우선순위 가중치 맵핑 (Effective Prioritized HRW Mapping in Heterogeneous Web Server Cluster)

  • 김진영;김성천
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권12호
    • /
    • pp.708-713
    • /
    • 2003
  • 인터넷 서비스에 대한 요청의 기하학적인 증가와 그 요구의 양과 질에 대한 다양성은 이질적인 능력을 지닌 서버들로 구성된 웹 서버 클러스터를 구축하게 되었다. 클러스터 환경에서 가장 결정적인 역할을 하는 요청 대 서버의 맵핑 기법이 최근 활발히 논의되고 있다. 기존의 맵핑 방식은 요청의 수를 기반으로 서버들이 동일한 양의 부하를 할당받는 것을 목적으로 한다. 하지만, 최근의 다양한 서비스의 증가로 인해 단순한 부하의 균등화만으로 적절한 지연 시간을 기대할 수 없게 되었다. 이에 요구되는 내용을 기반으로 맵핑을 수행하여 응답 시간을 단축하고 전체 서버들의 캐시 적중률도 높이는, 내용-기반 맵핑(content-based mapping)이 최근의 인터넷 환경에서 매우 긍정적으로 평가받고 있다. 이에 본 논문에서는 내용-기반 맵핑 방식을 이질적 환경에 적합하도록 개선시킨 우선 순위 최상 임의 가중치 맵핑(Prioritized Highest Random Weight Mapping, PHRW Mapping)을 제안하였다. 요구되는 내용을 기반으로 맵핑하며, 이질적 서버들에 대해 능력에 따라 우선 순위를 부여하여 높은 성능의 서버가 많은 요청들을 처리하는 방식이다. 이를 통해 이질적인 서버들로 구성된 클러스터에서 매우 효과적으로 적용하며, 특히 지연 시간에 제한을 갖고 있는 실시간 데이타 서비스의 지연 시간을 효과적으로 감소시킨다. 알고리즘과 시뮬레이션을 통하여, 제안된 기법을 사용하는 경우 짧은 지연 시간을 보장하여 전체 시스템의 성능이 향상됨을 증명하였다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).