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Application of Urban Computing to Explore
Living Environment Characteristics in Seoul
: Integration of S-Dot Sensor and Urban Data

Daehwan Kim1,2 Woomin Nam1,3 Keon Chul Park1*

ABSTRACT

This paper identifies the aspects of living environment elements (PM
2.5

, PM
10

, Noise) throughout Seoul and the urban characteristics 

that affect them by utilizing the big data of the S-Dot sensors in Seoul, which has recently become a hot topic. In other words, it 

proposes a big data based urban computing research methodology and research direction to confirm the relationship between urban 

characteristics and living environments that directly affect citizens.  The temporal range is from 2020 to 2021, which is the available 

range of time series data for S-Dot sensors, and the spatial range is throughout Seoul by 500mX500m GRID. First of all, as part of 

analyzing specific living environment patterns, simple trends through EDA are identified, and cluster analysis is conducted based on the 

trends. After that, in order to derive specific urban planning factors of each cluster, basic statistical analysis such as ANOVA, OLS and 

MNL analysis were conducted to confirm more specific characteristics. As a result of this study, cluster patterns of environment 

elements(PM
2.5

, PM
10

, Noise) and urban factors that affect them are identified, and there are areas with relatively high or low long-term 

living environment values compared to other regions. The results of this study are believed to be a reference for urban planning 

management measures for vulnerable areas of living environment, and it is expected to be an exploratory study that can provide 

directions to urban computing field, especially related to environmental data in the future.

☞ keyword : Urban Computing; Living Environment; Urban Factor; Urban Data; S-Dot; IoT

1. Introduction

Nowadays, smart city strategies are receiving a lot of 

attention as an attempt to solve urban problems. In order to 

realize such a smart city strategy, it is necessary to 

understand the major technologies of the 4th industrial 
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revolution, such as the Internet of Things, artificial 

intelligence, and drones, and one of the key elements is 

urban computing based on big data[1-2]. A system (urban 

computing) that accumulates, manages, and uses various big 

data (environment, transportation, urban planning, 

communication, SNS, etc.) in the city has become an 

important urban management strategy[3]. Urban computing 

is the process of collecting, integrating, and analyzing big 

data and heterogeneous data generated from various sources 

in urban space, which helps to understand the nature of 

urban phenomena and predict the future of cities, and is 

gradually growing as an interdisciplinary field that fuses 

traditional urban-related fields with computer science and 

information technology[4].

Since 2020, Seoul has been installing Seoul IoT 

sensor(S-Dot) throughout the city to collect various living 

environment data. Since then, it has been gradually 

producing high-quality and high-resolution data through the 

sophistication and calibration of the S-Dot device compared 

to the past, creating a favorable environment for research by 

using that data. However, in the case of previous studies 
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utilizing S-Dot living environment data, most of them only 

superficially analyze the data itself, or only analyze some 

phenomena, so multifaceted research has not been 

conducted. Also, very few studies have analyzed living 

environment data in conjunction with urban data, which does 

not lead to consideration of actual urban policies.

Inaddition, while various problems are occurring due to 

the development and concentration of cities, respiratory 

problems caused by fine dust and exposure to frequent noise 

in cities are a global problem and concern. South Korea's 

annual PM concentrations are often among the worst in the 

OECD[5], and it is no secret that noise and air pollution 

from traffic and other sources continue to threaten the health 

of modern people[6]. At this stage, it is indispensable to 

check the trend of environmental data such as fine dust and 

noise in cities and what factors affect the environment in the 

process of creating a huge urban organization.

Against this background, this study has the following 

objectives. First, by attempting application study utilizing 

S-Dot big data,an urban data sensor in Seoul, we verify the 

current situation of S-Dot data and discuss possible 

directions for improvement and future utilization. Second, 

we closely identify the aspects of fine dust and noise data 

that are directly related to citizen' lives. Finally, we identify 

urban  factors that affect each environmental data and 

propose directions for creating sustainable urban spaces. The 

temporal scope of the study is 2020.11.~2021.09. (11 

months), a period when maximum data can be obtained 

through data exploration, and the spatial scope is 612 

GRIDs(500m×500m) in Seoul, which were identified based 

on the available S-Dot locations during the temporal scope.

2. Related Works

2.1 Urban Computing Research related to 

Living Environments and Urban 

Elements

In managing the environment, past research has mainly 

focused on evaluating direct environmental hazards such as 

atmospheric factors. However, efforts have begun to 

incorporate factors such as land use and transportation into 

environmental analysis models to evaluate the impact of 

urban form on air quality.[7] The study of the environmental 

impacts of urban factors has gradually evolved into 

analyzing the environmental impacts of different scenarios of 

urban form[8,9] or to identify the relationship between urban 

spatial structure and environmental factors using direct 

statistical analysis such as regression models[10,11].

More specifically, several previous studies have identified 

a wide variety of urban planning factors that affect 

environmental variables such as fine dust(PM
10) and ultrafine 

dust(PM
2.5). Several studies have proved the clear impact of 

road traffic on air pollution[12,13,14], others have 

demonstrated the impact of the total volume of roads on PM 

emissions[15,16,17], and still others have shown that roads 

with high traffic volumes are associated with particular 

matters[18]. In addition, a positive correlation between the 

frequency of bus stops and PM
2.5 has been found[19,20]. On 

the other hand, the role of land use in managing fine dust 

has been addressed in many studies, but there is no clear 

consensus except for industrial areas and green areas. 

Several studies have shown that industrial land use 

contributes to PM
2.5 emissions[15,17] and that green and 

park areas improve air quality[21,22]. However, studies 

differ on the impact of residential, commercial, and 

mixed-use on PM emissions and dispersion. Similarly, the air 

quality impacts of high-density population and housing, as 

envisioned by the Compact City concept, are controversial. 

Some studies have shown that higher density improves air 

quality by reducing emissions of air pollutants such as 

greenhouse gases[23,24], while others have shown that higher 

density increases air pollutants and worsens air quality[25].

There is also a large body of research interested in the 

relationship between noise environmental variables and 

urban factors. In order to identify the relationship between 

noise and urban space, studies mainly use noise maps to 

investigate the relationship between noise and urban density, 

shape, and traffic resilience[26,27]. In addition, there are 

studies that analyze the interrelationship between noise levels 

and urban form[28]. In particular, in noise-related studies, it 

is common to grid the urban area and model urban factor 

datas in each grid using GIS[29],and it is common practice 

to reflect spatiotemporally referenced noise values in the grid 

as representative [26,30,31].

Through a series of previous studies, we can confirm the 
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results of studies to analyze the correlationbetween each 

living environment (fine dust, ultrafine dust, noise) and 

urban factors, and we set the variables for the analysis of 

this study based on them. In addition, according to the aim 

of this study, which identifies the living environment of 

Seoul, conduct the analysis by gridding the entire city of 

Seoul based on S-Dot.

2.2 Research of Time-series Data Analysis

K-Means Clustering is a well-known unsupervised 

machine learning algorithm that categorizes data into K 

types by measuring the distance between K user-set centroid 

points and the data[32,33]. Usually, this method has been 

applied to classify the types of data and predict the future 

value of data in various economic or social fields such as 

stock price and population[34].

In recent years, the research trend has been extended to 

environmental data, and K-Means cluster analysis has been 

applied to living environment data with time-series 

characteristics. For example, K-Means clustering of changes 

in environmental data such as barometric pressure, altitude, 

and wind has been used to categorize heat wave weather or 

to analyze the relationship between heat wave casualties and 

categorized weather[35]. In addition, there is also a study that 

utilizes the above cluster analysis method to classify types 

based on rainfall time series data to prepare a water resource 

management plan considering rainfall variability [36].

As there is a trend of studies that categorize time series 

data through K-Means clustering analysis and analyze the 

characteristics of the categorized data to solve problems or 

provide suggestions in the field, we expect that a similar 

methodology can be applied to this study using time series 

living environment data such as fine dust and noise.

3. Research Data and Process

3.1 Living Environmental Data from S-Dot

The living environments covered in this study are 

‘ultra-fine dust(PM2.5)’, ‘fine dust(PM10)’, and ‘noise’. In the 

original data, S-Dot Data, there are additional living 

environment, but during the data review process, the three 

categories are finally determined as the dependent variables 

by considering the degree of missing values and outliers, the 

relevance to the actual lives of citizen, and the possible 

relationship with urban factors. The original dataset for the 

above three living environments is a bundle of hourly 

environmental data collected through S-Dot. For this, we use 

the average daily, monthly, seasonal, and annual data and 

the clustered values based on the GRID of each point to 

which the S-Dot sensor belongs as the analysis data. In 

addition, for 'temperature' and 'humidity' data, the annual 

average value is treated as an independent variable. All 

living environment data are from November 2020 to 

September 2021 (11 months) at the GRID level according to 

the spatial and temporal scope of this study.

3.2 Urban Factor Datasets

The urban factor datasets are composed of variables that 

have been described in previous studies as having a 

significant impact on the fine dust(including ultra-fine dust) 

and noise environmental categories. It consists of 14 variables 

in four main categories: 'environmental characteristics', 

'transportation characteristics', 'land use characteristics', and 

'road characteristics'.

Density-related variables, which are often used in existing 

studies but have not been found to be significant, are 

excluded from this study because we believe that the 

variables in the 'transportation characteristics' category 

contain some explanatory power related to density. Land use 

characteristics, which have differentimpacts on environment 

by each previous studies, are disaggregated and entered as 

variables, and road characteristics are also disaggregated to 

examine the hierarchical characteristics of roads (road types 

are classified into arterial roads, collector roads, and local 

roads in South Korea based on the function of roads). We 

also bundle temperature and humidity with facilities that act 

as pollution sources as variables in the 'environmental 

characteristics'.The detailed data sources, definitions, and 

measurement methods for each variable are shown in Table 

1. These variables are used as independent variables for 

statistical determination of urban factor characteristics.
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Charact

eristic
Variables

Raw Data

(Data Source)
Definition

Measure

ment

Temporal 

Range

Environ-

mental

Temper-

ature

S-Dot Data

(Seoul City)

Average annual 

temperature

for each GRID

GRID 

represent

ative 

valuesby 

preproces

sing 

S-Dot 

data

2020.11.

~

2021.09.Humi

-dity

Average annual 

humidity

for each GRID

Pollu

-tant

Street 

Address Data

(Ministry of 

the Interior 

and Safety)

Pollutanr building 

coverage ratio for 

each GRID

(Pollution 

source 

building 

area)

÷ (GRID 

Area)

2021.09.

Tranport

-ation

Bus 

Stop

Bus stop 

locations

(Seoul City)

Number of bus 

stops

for each GRID

Count

2021.12.

Subway 

Station

Subway 

Stationby by 

Line

(Seoul City)

Number of 

subway stations

for each GRID

Count

Land 

Use

Low-rise 

Resident

ial Area

Seoul Zoning 

Districts

 _Urban 

Areas

(Seoul City)

Low-rise 

residential area

for each GRID

(Area of 

each 

zoning 

districts)

÷ (GRID 

Area)

2021.12.

High-rise

Resident

ial Area

High-rise 

residential area

for each GRID

Commer

cial 

Area

Commercial area 

for each GRID

Industria

l Area

Industrial area 

for each GRID

Green 

Area

Green area for 

each GRID

Road 

Total 

Road 

Density

Road Section

(Ministry of 

the Interior 

and Safety)

Total road 

density for each 

GRID

(Total 

Road 

Area)

÷(GRID 

Area)

2021.12.

Arterial 

Road 

Density

Arterial road 

density

for each GRID (Road 

Area

by road 

level)

÷(GRID 

Area)

Collector 

Road 

Density

Collector road 

density

for each GRID

Local 

Road 

Density

Local road 

density

for each GRID

(Table 1) Dataset for urban factors 3.3 Research Process

(Figure 1) Research process

Figure 1 summarizes the research process of this study. 

First, we conduct an exploratory data analysis (hereinafter 

referred to as EDA analysis) to check the cluster pattern of 

each category of living environment data. For this purpose, 

we check the optimal K through the Elbow Method for the 

S-Dot living environment time series data (ultra-fine dust 

K=8, fine dust K=11, noise K=7). Furthermore, by 

comparing and contrasting the values of each cluster, we 

identify significant clusters and their characteristics, and 

define reference category clusters for further statistical 

analysis.

Next, a multi-way ANOVA is performed as a statistical 

analysis to identify differences between clusters of living 

environment data and urban factor characteristics. The factor 

variable is the cluster value of each living environment 

sector, and the dependent variable is the average value of 

the entire period of the living environment data. This 

confirms the differences between the clusters derived from 

the living environment data and serves as logical evidence 

that the estimates determined in the previous EDA analysis 

may be significant. The data of the three living environment 

sectors used in this study are all confirmed to be 'not 

equally distributed' through Levene's analysis, so a 'Welch' 

criterion ANOVA is performed.

Then, OLS analysis (Ordinay Least Squares) is conducted 

with 14 pre-processed urban factor characteristics data as 

independent variables. Since the purpose of the OLS analysis 
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Ultra-fine Dust Fine Dust

β t p β t p

(Constant) -.956 .339 -.177 .860

Temperature .163 1.821 *.069 .091 1.022 **.007

Humidity .141 1.551 .121 .067 .735 .463

Pollutant .017 .320 .749 .027 .504 .614

Bus Stop .033 .703 .482 .017 .358 .721

Subway 
Station -.050 -1.187 .236 -.032 -.754 .451

Low-rise 
Residential 

Area
-.010 -.167 .867 .021 .342 .732

High-rise 
Residential 

Area
-.133 -1.799 *.073 -.103 -1.392 .164

Commercial 
Area -.052 -.897 .370 -.009 -.147 .883

Industrial 
Area -.056 -.858 .391 -.028 -.432 .666

Green Area .025 .364 .716 .048 .688 .492

Arterial Road 
Density .028 .651 .516 .041 .951 .342

Collector 
Road Density .129 2.499 *.013 .130 2.514 *.012

Local Road 
Density .061 1.235 .217 .089 1.792 *.074

R²=0.189

***p<0.001. **P<0.01. *P<0.1.

R²=0.183

***p<0.001. **P<0.01. *P<0.1.

is to identify the general effects of urban factors on the 

living environment, all 612 GRIDs are sampled. 

Theconditions for regression analysis such as normality of 

each data used in the analysis were found to be satisfied. 

However, in the case of 'Total Road Density', 

multicollinearity was identified and removed from the final 

analysis.

The last step is to conduct MNL(Multi-Nominal Logistic 

Regression). The MNL analysis identifies the urban factor 

characteristics that specifically affect the value of each 

cluster in a situation where all variables are controlled. In 

other words, it compares the impact (probability) of urban 

factors on each cluster relative to the cluster that serves as 

the reference category based on the trends identified in the 

previous EDA analysis. The reference category is Cluster 3 

for ultra-fine dust(PM
2.5), Cluster 11 for fine dust(PM10), and 

Cluster 3 for noise. As with the OLS analysis, we use all 14 

independent variables and exclude the "Total Road Density" 

variable. IBM SPSS Statistics26 is used for all EDA analysis 

and statistical analysis.

4. Result

4.1 Characteristics of Urban Factors in 

Lliving Environment identified by 

ANOVA and OLS

The results of the ANOVA analysis confirm that the 

differences in values are statistically significant in the 

seasonal and monthly averages for all three living 

environment categories (ultra-fine dust, fine dust, and noise). 

This indicates that the difference in trend between the 

clusters identified for each living environment is significant 

and gives us the justification to identify the factors that 

affect the difference in living environment values. This 

indicates that the difference in trend between the clusters 

identified for each living environment is significant and 

gives us the justification to identify the factors that affect 

the difference in living environment values. To this end, we 

conduct an OLS analysis with urban planning characteristics 

as independent variables, and the dependent variable is the 

average value of living environment values over the entire 

period for each GRID. The results of the analysis are shown 

in Figure 2 (explanatory power(R2) of the regression 

equation is 0.189 for ultrafine particulate matter, 0.183 for 

fine particulate matter, and 0.119 for noise).

(Table 2) OLS analysis result for ultra-fine and 

fine dust

First, the urban factors that affect the concentration of 

ultra-fine dust are identified as ‘Temperature’, ‘Collector 

Road', and 'High-rise Residential Area', with regression 

coefficients of 0.163, 0.129, and -0.133, respectively. 

Specifically, the higher the annual average temperature 

within a given GRID and the more roads that function as 

collector roads, the higher the concentration of ultra-fine 

dust, and the higher the area of high-rise residential areas 

within the GRID, the lower the concentration of that.

In the case of fine dust, the urban factors that affect its 

concentration are identified also as 'Temperature', 'Collector 

Road Density', and 'Local Road Density', with regression 

coefficients of 0.091, 0.130, and 0.089, respectively. It can 

be interpreted that the higher the average annual temperature 

within a given GRID, and the more roads with collector and 

local road functions, the higher the concentration of fine 
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Reference 
Category = 

Cluster3

Cluster2 Cluster6

B Wald p B Wald p

(Constant) 50.887 7.250 .007 84.912 20.132 .000

Temperature -1.844 6.292 *.012 -3.920 28.089 ***.000

Humidity -.394 6.888 **.009 -.443 8.857 **.003

Pollutant .000 .070 .792 .000 5.982 *.014

Bus Stop .010 .070 .791 -.004 .008 .929

Subway Station -.112 .227 .634 -.013 .003 .954

Low-rise 
Residential Area -.002 .026 .873 -.004 .110 .741

High-rise 
Residential Area .008 1.095 .295 .006 .637 .425

Commercial Area .014 2.246 .134 .006 .430 .512

Industrial Area -.003 .081 .776 -.030 3.309 *.069

Green Area .015 1.565 .211 .014 1.194 .274

Arterial Road 
Density -.036 1.318 .251 -.045 1.833 .176

Collector Road 
Density -.078 7.332 **.007 -.058 3.752 *.053

Local Road 
Density -.043 1.731 .188 .031 .894 .344

Chi-Square(Sig)=206.664(0.000)

***p<0.001. **P<0.01. *P<0.1.

dust. In addition, a very similar result is found for ultra-fine 

dust, confirming that urban factors do not differ significantly 

in their impact on the two living environment sectors. 

(Table 3) OLS analysis result for noise

Noise

β t p

(Constant) 7.390 .000

Temperature -.442 -5.179 ***.000

Humidity -.307 -3.531 ***.000

Pollutant .090 1.750 *.081

Bus Stop .042 .958 .339

Subway Station .011 .277 .782

Low-rise Residential Area -.089 -1.542 .123

High-rise Residential Area .011 .160 .873

Commercial Area .073 1.329 .184

Industrial Area .044 .698 .485

Green Area .028 .420 .674

Arterial Road Density .205 4.961 ***.000

Collector Road Density .083 1.685 *.093

Local Road Density -.022 -.460 .646

R²=0.119

***p<0.001. **P<0.01. *P<0.1.

Finally, for noise, five variables have a statistically 

significant impact on the magnitude of noise, and their 

regression coefficients are as follows: ‘Temperature’ is 

-0.442, ‘Humidity’ is -0.307, ‘Pollutant’ is 0.090, ‘Arterial 

Road Density’ is 0.205, and ‘Collector Road Density’ is 

0.083. This means that the lower the average annual 

temperature and humidity, or the more building uses with 

potential pollution sources, and the more roads with arterial 

and collector functions, the higher the average noise within 

a given GRID.

4.2 Characteristics of Urban Factors in 

Lliving Environment identified by MNL 

Analysis

As mentioned above, in determining the reference 

category for MNL analysis through EDA analysis, the focus 

is on selecting clusters which annual trends in concentration 

(fine and ultrafine dust) and magnitude (noise) remain 

withinthe standard value (median) and comparing them to 

clusters with higher or lower trends. Accordingly, the 

finalized reference categories for each living environment 

sector are  Cluster 3 for ultra-fine dust, Cluster 11 for fine 

dust, and Cluster 3 for noise.

(Table 4) MNL analysis result for ultra-fine dust

For ultra-fine dust, the reference category (Cluster 3) and 

MNL analysis is conducted for Cluster 2 and Cluster 6, 

which have maintained a low annual trend in concentration. 

For Cluster 4, which has a high trend, no significant 

variables were identified in the analysis. In Cluster2 and 

Cluster6, the common significant variables are 

'Temperature', 'Humidity', and 'Collector Road Density'. 

This is consistent with the previous OLS results, indicating 

that a given GRID is more likely to be classified as Cluster 

3 (with higher annual average temperature and humidity and 

more roads that function as collector roads) than Cluster 2 

or Cluster 6. Furthermore, the variables 'Pollutant' and 

'Industrial area' are found to be significant in Cluster 6. In 

the case of 'pollutant', the B-value is 0.000, which is almost 

insignificant, but the 'Industrial area' can be interpreted to 

mean that the more industrial areas in a given GRID, the 

higher the probability of being classified as Cluster 3 (areas 

with higher annual ultra-fine dust concentrations than Cluster 

6).

In the case of fine dust, MNL analysis is performed 

based on the reference category (Cluster 11) for Cluster 2 

and Cluster 6, which are identified as having relatively low 
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Reference Category = 
Cluster11

Cluster2 Cluster6 Cluster9

B Wald p B Wald p B Wald p

(Constant) 36.293 2.109 .146 62.733 8.116 .004 -4.781 .036 .849

Temperature -1.235 1.504 .220 -2.848 11.069 ***.001 -.554 .323 .570

Pollutant .000 .482 .488 .000 2.872 *.090 .000 3.258 *.071

Bus Stop .001 .001 .981 .011 .060 .807 .005 .009 .922

Subway Station .210 .310 .578 .187 .336 .562 -.256 .390 .532

Low-rise Residential Area -.027 2.209 .137 -.014 1.032 .310 -.014 .577 .448

Commercial Area -.005 .165 .684 -.018 1.987 .159 -.019 1.517 .218

Industrial Area -.017 .421 .517 -.025 1.889 .169 -.021 1.146 .284

Green Area -.002 .016 .899 -.002 .017 .895 -.015 .705 .401

Arterial Road Density .032 .509 .476 -.052 .991 .320 .111 7.105 **.008

Collector Road Density -.122 7.058 **.008 -.051 2.015 .156 .038 .933 .334

Local Road Density -.058 1.506 .220 .010 .060 .807 .063 1.848 .174

Chi-Square(Sig)=234.431(0.000) ***p<0.001. **P<0.01. *P<0.1.

(Table 5) MNL analysis result for fine dust

Reference 
Category = 

Cluster3

Cluster2 Cluster6

B Wald p B Wald p

(Constant) 60.634 6.558 .010 32.985 3.101 .078

Temperature -3.100 10.824 ***.001 -1.246 2.809 *.094

Humidity -.299 2.704 .100 -.289 4.042 *.044

Pollutant .000 2.606 .106 .000 .296 .586

Bus Stop .018 .093 .761 .046 1.022 .312

Subway Station -.191 .262 .609 .110 .128 .720

Low-rise 
Residential Area -.010 .187 .665 .021 1.986 .159

High-rise 
Residential Area .001 .008 .928 .007 .561 .454

Commercial Area .017 1.007 .316 .012 .752 .386

Industrial Area -.010 .232 .630 .004 .088 .766

Green Area .000 .000 .985 .019 2.292 .130

Arterial Road 
Density .151 12.638 ***.000 .041 1.073 .300

Collector Road 
Density .081 3.747 *.053 -.039 1.287 .257

Local Road 
Density .154 8.469 **.004 .161 15.776 ***.000

annual trends in concentration, and Cluster 9, which is 

identified as having high annual trends. Cluster 3 also 

belongs to the group with a high annual trend, but the 

number of samples is quite small and no significant 

variables are identified in the analysis, so it is excluded 

from the analysis results. First of all, the significant variable 

in Cluster 2 is 'Collector Road Density', which means that 

if there are many roads with collector road function in a 

particular GRID, the probability of being classified as 

Cluster 11 (areas with higher annual fine dust concentration 

than Cluster 2) is higher, as shown in the previous OLS 

results. For Cluster 6, three variables are found to be 

significant: Temperature', Humidity', and 'Pollutant'. 

However, "Pollutant" is found to be a non-significant 

variable, with a B-value of 0.000, as was the case for 

ultra-fine dust. From this, it can be interpreted that if the 

average annual temperature and humidity within a particular 

GRID is high, the probability of being classified as Cluster 

11 (areas with higher annual fine dust than Cluster6) is high. 

On the other hand, in the case of Cluster 9, 'Pollutant' and 

'Arterial Road Density' are significant, but the former 

variable is less plausible for the reasons mentioned above. 

Therefore, through the latter variable, it can be interpreted 

thatif there are many roads with arterial road functions in a 

specific GRID, the probability of being classified as Cluster 

9 (an area with higher annual fine dust concentration than 

Cluster 11) is higher.

(Table 6) MNL analysis result for noise
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Cluster1 Cluster7

B Wald p B Wald p

(Constant) -25.682 2.207 .137 14.796 .400 .527

Temperature 1.165 2.893 *.089 -.651 .511 .475

Humidity .106 .645 .422 -.133 .521 .470

Pollutant .000 .028 .867 .000 .849 .357

Bus Stop -.002 .001 .971 .046 .718 .397

Subway Station .024 .007 .933 -.219 .261 .610

Low-rise 
Residential Area .030 5.294 *.021 .031 3.306 *.069

High-rise 
Residential Area .009 .901 .343 .009 .509 .476

Commercial Area .009 .539 .463 -.004 .038 .845

Industrial Area -.005 .165 .685 -57.588 .002 .960

Green Area .015 1.780 .182 -.001 .003 .954

Arterial Road 
Density -.036 .792 .374 .049 1.006 .316

Collector Road 
Density -.023 .555 .456 .023 .260 .610

Local Road 
Density .213 32.930 ***.000 .097 3.824 *.051

Chi-Square(Sig)=221.705(0.000) ***p<0.001. **P<0.01. *P<0.1.

Lastly, for noise, we conduct MNL analysis with the 

reference category (Cluster3) for Cluste1 and Cluster7, 

which have a low average annual magnitude of noise, and 

Cluster2 and Cluster4, which have a high trend in noise 

magnitude. First, Cluster1 and Cluster7 share a common 

characteristic: both the variables 'Local Road Density' and 

'Low-rise Residential Area' are significant. This means that 

the more local roads and the larger the area of low-rise 

residential areas in a given GRID, the more likely it is to be 

classified as Cluster 1 or Cluster 7 (areas with lower annual 

noise than Cluster 3). In other words, residential areas that 

do not have a large number of arterial or collector road 

features are classified as GRIDs with lower annual noise, 

which is the same result as in OLS. Meanwhile, the 

significant variables in Cluster 2 are 'Temperature', 'Arterial 

Road Density', 'Collector Road Density', and 'Local Road 

Density'. This means that, similar to the previous OLS 

results, the lower the average annual temperature or the 

more arterial and collector roads within a given GRID, the 

more likely it is to be classified as Cluster 2 (i.e., areas with 

higher annual noise than Cluster 3). In addition, "Local 

Road Density" was also found to be a significant variable in 

Cluster 2, suggesting that areas with a significantly higher 

road density would have been classified in Cluster 2 

regardless of the hierarchy. Furthermore, in Cluster 4, the 

significant variables are ‘Temperature’, 'Humidity', and 

'Local Road Density', which is consistent with the OLS 

result that lower average annual temperature and humidity 

within a given GRID are more likely to have higher annual 

noise.

5. Conclusion and Implication

5.1 Conclusion

This study categorized clusters according to the trends of 

ultra-fine dust, fine dust, and noise in the living environment 

in Seoul and identified urban factors that affect those 

clusters. It is inevitable that there will be areas in the city 

that have relatively high or low levels oflong-term living 

environment compared to other areas, and while there are 

many factors that contribute to the development of such 

areas, it is possible to identify the influence of some urban 

factors (environmental characteristics, land use 

characteristics, road characteristics, etc.).  

Based on the results of this study, it can be concluded 

that there are certain characteristics of urban factors that 

affect the concentration of fine dust and the loudness of 

noise in a situation where several characteristics are 

controlled. First of all, it can be observed that the living 

environment (ultrafine particles, fine particles, and 

temperature) is sensitive to basic and natural environmental 

characteristics (i.e., temperature and humidity). All three 

categories of living environment are significantly affected by 

'temperature’ and ‘humidity’(positive correlation for ultrafine 

and fine dust concentrations and negative correlation for 

noise), which is a well-known natural phenomenon, and the 

results of this study also confirm this fact. In addition, noise 

is positively correlated with 'pollutant'. In this study, 

pollutant refers to the density of buildings of a given use 

that are potential sources of air and noise pollution. This 

confirms that areas of the city with a high density of 

buildings of that use do indeed have higher average annual 

noise levels.
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However, in addition to natural phenomena, we should 

pay more attention to the effects of urban organizations 

(elements) created through urban planning. In particular, 

when it comes to roads, smaller roads (collector roads, local 

roads) that are directly connected to city traffic have a 

significant impact on the living environment, rather than 

roads for high-speed driving with a large scale. In the case 

of 'collector road', a positive correlation is found for all 

three living environments. A collector road is a road that 

connects traffic on local roads to secondary arterial roads 

that connect to residences and various facilities at the end of 

traffic, and is a kind of node that connects large and small 

roads through an appropriate road width. In other words, 

areas with a high density of collector roads are bound to 

have high traffic volume and frequent population movement, 

and it can be interpreted that such characteristics are closely 

related to the living environment such as ultra-fine dust, fine 

dust, and noise. In addition, the density of local roads is 

positively correlated with the concentration of fine dust, and 

it can be assumed that the characteristics of local roads that 

connect multiple buildings within a block generate as much 

traffic and pedestrian traffic as collector roads, and the 

average concentration of fine dust increases accordingly. On 

the other hand, for noise, all types of road densities are 

correlated, confirming that the presence of roads has a 

significant impact on noise.

Some effects of land use characteristics are also identified 

on this study. First, we find that areas with large areas of 

'industrial zones' are associated with higher concentrations 

of fine dust, which supports previous research findings. It is 

noteworthy that the extent of 'high-rise residential area' is 

negatively correlated with ultra-fine dust. High-rise 

residential areas, as defined in this study, are residential 

areas with high residential density and a relatively 

comfortable living environment according to the Korean 

Land Planning Act. Therefore, even within the same city, 

the larger the area of such residential zones, the better the 

concentration of fine particulate matter is managed.

5.2 Implication

The relationships between urban factors and the living 

environment identified in this study suggest that there are 

parts that need to be further explored beyond those that have 

been demonstrated in previous studies. However, actions 

such as removing collector roads or allocating more low-rise 

residential areas to reduce fine dust concentrations or noise 

are impossible to control at the city level, and 

one-size-fits-all urban policies will never be effective. 

However, this studyhas identified clusters of environmentally 

vulnerable neighborhoods, and it is necessary to take 

appropriate measures to reduce fine dust and noise in these 

areas. Furthermore, for newly developed urban areas, it is 

expected that the results of this study can be used to 

proactively prevent the layout and design of roads, 

temperature and humidity management, and the layout and 

management of buildings that are potential sources of 

pollution.

This study also enhances the possibility and importance 

of linking urban data with living environment data. This 

study categorized clusters based on time series data of three 

environmental sectors directly related to the lives of citizen 

and identified their patterns. Furthermore, it can be seen as 

a cornerstone or direction for the production of living 

environment maps. By analyzing the situation of Seoul by 

linking multiple data instead of a single living environment 

data, we can better understand the city and provide 

directions for improvement. Finally, based on the analysis 

results, we suggest directions for reducing fine dust and 

noise from an urban planning and policy perspective.

Above all, in the future, more detailed analysis of the 

living environment in Seoul can be achieved by inputting 

more urban factor datas orchanging the analysis model. It 

would also be possible to analyze the structure of the grid 

in more detail. We hope that the quality research will 

continue in the future.
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