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Abstract
Two-Phase sampling, which was first introduced by Neyman (1938), has various applications in different

forms. Variance estimation for two-phase sampling has been an important research topic because conventional
variance estimators used in most softwares are not working. In this paper, we considered a variance estimation
for two-phase sampling in which stratified two-stage cluster sampling designs are used in both phases. By
defining a conditionally unbiased estimator of an approximate variance estimator, which is calculable when all
elements in the first phase sample are observed, we propose an explicit form of variance estimator of the double
expanded estimator for a two-phase sample. A small simulation study shows the proposed variance estimator
has a negligible bias with small variance. The suggested variance estimator is also applicable to other linear
estimators of the population total or mean if appropriate residuals are defined.
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1. Introduction

Two-Phase sampling, also known as double sampling, was first introduced by Neyman (1938). He
suggested to use two-phase sampling for stratification, which refers to a situation where the observa-
tions from the first phase sample is used to make a stratification for the second phase sampling.

Two-Phase sampling has various applications in different forms. Rao (1973) and Cochrane (1977)
considered the case where the first phase sample is a simple random sample and the second phase
sample is selected using the information obtained in the first phase. Breidt and Fuller (1993) sug-
gested a regression type estimator for multiple-phase sampling that is applied to analyze a natural
resource inventory data. Rao and Sitter (1995) considered a ratio estimator when a two-phase sim-
ple random sample is selected and proposed a new linearization variance estimator. Hidiroglou and
Särndal (1998) studied the way of using different types of auxiliary information, which is obtained
from the population or the first phase sample, to develop the calibration weights. Hidiroglou (2001)
considered a situation in which the second phase sample is not nested in the first phase sample.

Variance estimation for two-phase sampling has been an important research topic because conven-
tional variance estimators used in most softwares are not working. Unlike two-stage cluster sampling,
two-phase sampling does not have invariant and independent property, which makes it more com-
plicate to estimate the variance of estimators of population mean or total. Especially in the case of
complex sampling designs, stratification and clustering are applied and are used in both phases, it
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is hard to derive an explicit form of the variance estimator. Therefore, many replicate variance es-
timators have been suggested where relatively simple element designs are used in the first and(or)
second phase. Even though replicate variance estimation shows a way to define an asymptotically un-
biased variance estimator, calculating replicate weights is a cumbersome process because the number
of replications, which is proportional to first phase sample size, is huge in general. Rao and Shao
(1992) proposed a jackknife variance estimator in the context of hot-deck imputation in which re-
sponses correspond to the second phase. Fuller (1998) proposed a replicate variance estimator for the
two-phase regression estimator. Kim et al. (2006) proposed a consistent replicate variance estimator
applicable to two-phase sampling for stratification. Kim and Yu (2011) developed a bias-adjusted
replicate variance estimator that extends the result of Kim et al. (2006).

In this paper, we provided an explicit formula of an asymptotically unbiased variance estimator
which is applicable when stratified two-stage cluster sampling is used in both phases. The variance
estimator is based on the linearization and assumes a relationship between inclusion probability and
selection probability. Under the multi-stage cluster sampling, we also assume that most of the variance
is explained by the variability among primary sampling units.

2. Double expanded estimator

Let the parameter of interest be the population total ty =
∑

k∈U yk, where yk is the value of a variable
y for the kth element in the population. The number of elements in the population is either known or
not. Let sa be the first phase sample that is selected using a probability sampling design pa(sa). If
every element in sa is observed, an unbiased estimator of the population total is

t̂sa =
∑
k∈sa

wakyk,

and an unbiased variance estimator of t̂sa , suggested by Horvitz and Thompson (1952), is

V̂unb
(
t̂sa

)
=

∑∑
k∈sal∈sa

∆akl

πakl

yk

πak

yl

πal
, (2.1)

where wak = π−1
ak = [Pr(k ∈ sa)]−1 is the sampling weights defined by pa(sa), ∆akl = πakl − πakπal, and

πakl = Pr[(k ∈ sa) ∩ (l ∈ sa)].
A second phase sample s is selected from the first phase sample sa through a conditional sampling

design p(s|sa) conditioning on sa. The double expanded estimator (DEE) of the population total using
a sample s is

t̂DEE =
∑
k∈s

wakwk| sa yk =
∑
k∈s

w∗kyk, (2.2)

where w∗k = wakwk|sa and wk|sa = π−1
k|sa

= [Pr(k ∈ s|sa)]−1. By applying the following conditional
variance result

V
(
t̂DEE

)
= Vpa

[
Ep

(
t̂DEE | sa

)]
+ Epa

[
Vp

(
t̂DEE | sa

)]
,

we have the variance of t̂DEE as shown below.

V
(
t̂DEE

)
=

∑∑
k∈Ul∈U

∆akl
yk

πak

yl

πal
+ Epa

∑∑
k∈sal∈sa

∆kl| sa

yk

π∗k

yl

π∗l

 , (2.3)
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where ∆kl|sa = πkl|sa−πk|saπl|sa , πkl|sa = Pr[(k ∈ s)∩(l ∈ s)|sa], π∗k = πakπk|sa and U is the set of elements
in the population.

Särndal et al. (1991) provided the unbiased variance estimator when general sampling designs are
used in both phases as shown below.

V̂
(
t̂DEE

)
=

∑∑
k∈sl∈s

∆akl

π∗kl

yk

πak

yl

πal
+

∑∑
k∈sl∈s

∆kl| sa

πkl| sa

yk

π∗k

yl

π∗l
, (2.4)

where π∗kl = πaklπkl|sa .
The variance estimator given in (2.4) depends on double sums and second order inclusion prob-

abilities, which make the calculation impossible or cumbersome. An asymptotically unbiased and
applicable variance estimator corresponding to the second term of (2.4) is relatively easy to derive.
However, it is difficult to approximate the first term of (2.4) due to its dependency of the conditional
inclusion probability, conditioning on all possible sa. In this paper, we provide an asymptotically
equivalent and calculable formula for the first term of the variance estimator (2.4) by finding an ap-
proximation of (2.1).

3. Proposed variance estimator

For a single-phase sampling design, most survey software use the following approximately unbiased
variance estimator (3.1) to avoid the calculation of double sum and second order inclusion probabili-
ties.

V̂

∑
k∈s

yk

πk

 =

(
1 −

n
N

) 1
n (n − 1)

∑
k∈s

nyk

πk
−

1
n

∑
l∈s

nyl

πl

2

, (3.1)

where πk = Pr(k ∈ s), n and N are the number of primary sampling units (PSU) in the sample and
population, and

∑
k∈s yk/πk is the Horvitz-Thompson (1952) estimator of the population total. The

variance estimator given in (3.1) is obtained under the assumption πk ≈ npk, so that

1
n

∑
k∈s

yk

pk
≈

1
n

∑
k∈s

nyk

πk
,

where pk is a selection probability used to define an unbiased estimator when with-replacement sam-
pling is used. Note that the variance estimator (3.1) depends on neither double sum nor second order
inclusion probability. The variance estimator in (3.1) works well when the number of PSU is large
enough so that the inverse of the number of PSU is close to zero and the chance of selecting a PSU
more than one time in the selection process is near zero. The variance estimator (3.1) is not directly
applicable for two-phase sampling because πk = Pr(k ∈ s) = Pr(k ∈ sa) × Pr(k ∈ s|k ∈ sa) , π∗k and
the first phase sampling is not independent from the second phase sampling.

To derive an applicable approximate variance estimator of t̂DEE under a two-phase sampling, we
assume that a stratified two-stage cluster sampling is used in both phases. The result can be directly
extended to multi-stage cluster sampling. In the first phase, a stratified sample of clusters is selected
at the first stage and, at the second stage, samples of elements are selected from each cluster selected
in the first stage. If all elements selected in the first phase are observed, an approximate variance
estimator of E(t̂DEE |sa) = t̂sa , which is asymptotically unbiased to the expectation of (2.1) as given in
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Woodruff (1971), is

V̂a
(
t̂sa

)
=

H∑
h=1

(
1 −

nah

Nah

)
nah

nah − 1

nah∑
i=1

(yhi· − ȳh··)2 , (3.2)

where yhi· =
∑mahi

j=1 wahi jyhi j, yh·· = n−1
ah

∑nah
i=1 yhi·, wahi j = π−1

ahi j and the subscript hi j means the jth

element in cluster i of stratum h defined for selecting a first phase sample. For example, mahi and nah

denote the number of elements in cluster i, it belongs to stratum h, and the number of clusters selected
from stratum h.

At the second phase, strata and clusters are redefined which are either the same as the ones defined
in the first phase or not. To obtain a sample s, a cluster sample of size ng is selected from stratum
g in the first stage, and a sample of elements of size mgk is selected from cluster k in stratum g that
is selected in the first stage. Note that the variance estimator in (3.2) is approximately unbiased to
the first term of (2.3), if all elements in the first phase sample are observed. Thus, by finding a
conditionally unbiased estimator of (3.2), we obtain an approximately unbiased variance estimator
corresponding to the first term of (2.4).

We propose an estimator of (3.2) based on the second phase sample s as

V̂1 =

H∑
h=1

(
1 −

nah

Nah

)
nah

nah − 1

nah∑
i=1

(
ŷhi· − ¯̂yh··

)2
, (3.3)

where

ŷhi· = nah

∑G
g=1

∑ng

k=1
∑mgk

l=1 w∗gkl × ygkl × zgkl (hi)∑G
g=1

∑ng

k=1
∑mgk

l=1 wagkl| sa × zgkl (hi)
,

and zgkl(hi) is one if element l in cluster k of stratum g in the second phase belongs to cluster i in
stratum h defined in the first phase, and is zero otherwise. Note that ŷhi· in (3.3) is a ratio estimator of
the cluster total where

∑G
g=1

∑ng

k=1
∑mgk

l=1 wagkl|sa × zgkl(hi) is an estimator of nah. We use a ratio estimator
because a conditionally unbiased estimator of nah based on s usually has large variability. Because
ŷhi· is approximately unbiased to yhi·, the variance estimator (3.3) is also conditionally unbiased and
consistent to V̂a(t̂sa ) in (3.2).

By applying the equation (3.1) with yk =: π−1
ak yk and πk =: πk|sa , we obtain a conditionally and

approximately unbiased estimator for the second term of variance estimator (2.4) as

V̂2 =

G∑
g=1

(
1 −

ng

nag

)
ng

ng − 1

ng∑
k=1

(
ẏgk· − ¯̇yg··

)2
, (3.4)

where

ẏgk· =

mgk∑
l=1

ygkl

πagklπgkl| sa

, ¯̇yg·· =
1
ng

ng∑
k=1

ẏgk·.

Thus, the final variance estimator is obtained by adding (3.3) and (3.4) as shown below.

V̂ = V̂1 + V̂2. (3.5)
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The proposed variance estimator does not depend on double sum or second inclusion probability
and is easy to use because it only requires the first order inclusion probability and the definition
of z. Most single-phase complex designs are formulated as a form of stratified multi stage cluster
sampling, thus variance estimator of (3.5) is directly extended to the general sampling designs in
which stratification and clustering are applied in both phases. Also, the proposed variance estimator
can be applied immediately in conventional survey software using the given formula.

3.1. Two-Phase sampling for stratification

Consider a two-phase sampling for stratification problem in which a simple random sample is selected
in the first phase. Then the first phase sample is stratified using the information observed in the first
phase. A two-phase sample is selected using a stratified simple random sampling by selecting a simple
random sample from each stratum independently.

If we apply equation (3.2) to get an asymptotically unbiased variance estimator based on the first
phase sample sa, we have

V̂a
(
t̂sa

)
= N2

(
1 −

na

N

) 1
na

1
na − 1

∑
k∈sa

(
yk − ȳsa

)2

= N2
(
1 −

na

N

) 1
na

G∑
g=1

wag

[
S 2

ysag
+

(
ȳsag − ȳsa

)2
]
,

(3.6)

by partitioning the sum of squares such that

∑
k∈sa

(
yk − ȳsa

)2
=

G∑
g=1

(
nag − 1

)
S 2

ysag
+

G∑
g=1

nag

(
ȳsag − ȳsa

)2
,

where ȳsag = n−1
ag

∑nag

k=1 ygk, S 2
ysag

= (nag − 1)−1 ∑nag

k=1(ygk − ȳsag )2, wag = (na − 1)−1(nag − 1) and nag is a
number of elements in the stratum g defined in the first phase sample. By replacing ȳsag and S 2

yag
with

their estimators based on the final samples, we obtain an estimator corresponding to V̂1 of (3.7) which
is equivalent to the one suggested by Särndal et al. (1991),

V̂1 = N2
(
1 −

na

N

) 1
na

G∑
g=1

wag

[
S 2

ysg
+

(
ȳsg − ȳDEE

)2
]
, (3.7)

where S 2
ysg

= (ng − 1)−1 ∑ng

k=1(ygk − ȳsg )2, ȳsg = n−1
g

∑ng

k=1 ygk, ȳDEE =
∑G

g=1 wagȳsg and ng is the number
of elements in the stratum g of sample s.

By applying equation (3.4), we obtain the second term of the variance estimator of t̂DEE as shown
below.

V̂2 = N2
G∑

g=1

(
1 −

ng

nag

)
w2

ag

S 2
ysg

ng
. (3.8)

4. Simulation study

To investigate the performance of the suggested variance estimator, a small simulation study was
done. For a simulation study, we generate a finite population of (y, x) from the following model. For
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Table 1: Mote Carlo properties of variance estimator

Scenario Variance Relative bias (%) CV (%) Coverage rate (%)
1 7,738,707,503 5.307 1.176 95.6
2 14,818,176,130 −0.390 4.662 94.8
3 9,857,814,309 3.881 4.265 95.2

c = 1, . . . , 10,

yci j = (10 + c) + ηci + εci j, xci j = 15 + 0.7
(
yci j − 15

)
+ δci j

ηci ∼ N (0, 2) , εci j ∼ N (0, 1) , δci j ∼ N (0, 1) .

Note that y is generated independently in each stratum and each observation is nested within cluster
and stratum. Also y and x are correlated in the population. The number of clusters and elements in the
population are 1,977 and 397,678, respectively. The population mean of x and y are 1.54 and 1.55.

To select a two-phase sample, we considered three sampling scenarios. In the first one, we select a
simple random sample of size 100,000 elements in the first phase. For the second scenario, we select
a two-stage simple random sample in the first phase where 500 clusters are selected in the first stage
and 50% of the elements are selected from each cluster selected in the first stage. In the final scenario,
a two-stage πps cluster sample of size 500 clusters was selected using the number of elements in the
cluster as a size variable in the first stage, and 100 elements were selected from each selected cluster
using a simple random sampling.

In all three scenarios, a stratified simple random sample is selected at the second phase. For
stratification, we use an information on x variable obtained in the first phase. We stratify the first
phase sample that results in 10 strata, where the stratum boundaries are 11.96, 13.09, 13.95, 14.72,
15.44, 16.16, 16.92, 17.79 and 18.94. As an allocation method, we use a proportional allocation
having a proportion 20%. The number of replications for the simulation is 5,000. No stratification
of clusters in selecting the first phase sample is considered because sample selection across strata are
independent and thus the results of a simulation study are directly applied to the case where more than
one stratum is used.

Table 1 shows the Monte Carlo properties of the suggested variance estimator. The variance in
Table 1 is the Monte Carlo variance of t̂DEE and the relative bias and CV are given as shown below.

Relative bias (%) =
Monte Carlo mean of variance estimator − Variance

Variance
× 100,

CV (%) =

√
Monte Carlo variance of variance estimator
Monte Carlo mean of variance estimator

× 100.

Coverage rate shows a relative frequency of confidence intervals containing the true population total
among 5,000 confidence intervals having a 95% confidence level.

Properties commonly required for a variance estimator are 1) non-negativity 2) computability 3)
approximately unbiased 4) small variance, and 5) a pivotal property, which means that the distribution
of the normalized quantity defined from using the variance estimator does not depend on param-
eters. By its definition, the suggested variance estimator provides non-negative values and is also
computable if we have the first order inclusion probability which is known. Also, it is known that
the variance estimator given in (3.4) is asymptotically unbiased and thus its conditionally unbiased
one is also asymptotically unbiased. The simulation result shows that the relative bias in the three
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scenarios is negligible, being less than 6%. The coefficient of variation is only about 1.2 – 4.7% and
the coverage rate of the 95% confidence interval constructed using the suggested variance estimator
is near the nominal one at 95%.

5. Conclusion

Variance estimation is a possible hindrance in using two-phase sampling due to its complexity. Even
though replicate variance estimation is often used in practice, the calculation is cumbersome if the
first-phase sample size is huge, which is common. In this paper, we provided an explicit formula for a
variance estimator that satisfies the properties required for a variance estimator. Intuition of defining
the variance estimator is simple, that is, finding a conditionally unbiased estimator of an approximate
variance estimator that is applicable if all elements in the first-phase sample are observed.

A small simulation study shows the suggested variance estimator works reasonably well with re-
spect to bias and variance. The variance estimator can be also used for linear estimators by defining
appropriate residuals. The suggested variance estimator performs poorly if the number of elements,
which belong to a first phase cluster and are selected in the second phase, is small. To reduce the vari-
ability of the variance estimator in such a case, increasing the second phase sample size or applying
an appropriate adjustment coefficient to nah in (3.3) is necessary.
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