• Title/Summary/Keyword: tool shape

Search Result 1,358, Processing Time 0.026 seconds

Study on Compensation for Shape of Formed Tool for Turning of Bearing Raceway (베어링 궤도 선삭가공용 총형공구의 형상보정에 관한 연구)

  • Moon H.K.;Chung J.H.;Moon S.C.;Joun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.426-429
    • /
    • 2005
  • In this study, the formed tool is used to machine of bearing raceway and a shape compensation scheme is proposed to compensate for shape of it in turning process. It is introduced the conventional design method of the formed tool; a simple depth compensation method and a drawing compensation method. And it is performed to investigate in detail properties of the formed tool about a tool angle and problems of a turning process of bearing raceway using the formed tool. The applicability of the proposed scheme is examined by comparing the experimental results obtained by a new designed formed tool with those obtained by a conventional tool.

  • PDF

A Study on the Relationship of Surface Shape and Tool Runout in the Ball-End Milling (경사면 가공에서 공구의 런아웃과 표면 형상과의 관계에 관한 연구)

  • 박희범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.591-596
    • /
    • 1999
  • Due to the development of CNC machining centers and the complexity of machined part geometry, the ball-end milling became the most widely used the cutting process. Generally, the tool runout defined as the eccentricity of a rotating tool set in the holder involved the spindle runout and the problem of tool runout generated to remove the workpiece is a main factor affecting the machining accuracy. In this paper, the relationship of tool runout(zero-to-peak, P-K) and surface shape on the change of cutting conditions is studied and it is proposed the probability of prediction of surface shape from the in-process tool runout measurements with high response displacement sensor in the ball-end milling

  • PDF

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module (금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정)

  • Lee, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.

Design of Tool Clamping Device Based on a Shape Memory Alloy (형상기억합금 기반 공구 클램핑 장치 설계)

  • Lee, Dong-Ju;Shin, Woo-Cheol;Park, Hyung-Wook;Ro, Seung-Kook;Park, Jong-Kweon;Chung, Jun-Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2008
  • This paper describes a tool-clamping/unclamping mechanism for application of a micro-spindle. The mechanism is based on one-way shape memory effect and interference-fit. The corresponding mathematical models and a few considerable design parameters are mentioned in this paper. Especially, necessary conditions for the clamping and unclamping operation are investigated through finite element analysis. The analysis results show that the differences between the diametral deformations of the tool holder in high temperature and that in low temperature are increased according to amounts of the interference. Thus the less interference between the tool-holder and the ring, the less tolerance to allow the clamping and unclamping operation because the inner diameter of the tool holder in high temperature should be smaller than the diameter of the tool shank, and that in low temperature should be larger than the diameter of the tool shank. In addition, the design for maximization of clamping force are investigated based on finite element analysis. The results show that the more amounts of the interference, the more clamping force. As the result, the interference should be considered as a important factor to maximize the tool clamping force.

Investigation for Clamping Properties of the Tool Clamping Device Based on the Shape Memory Alloy for Application of a Micro Spindle System (소형 스핀들 시스템 적용을 위한 형상기억합금 기반 공구 클램핑 장치의 체결특성 고찰)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Park, Jong-Kweon;Lee, Deug-Woo;Chung, Jun-Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a rotating tool clamping device was developed based on a shape memory alloy(SMA) and its feasibility as a tool holder was experimentally explored. The SMA-based device was able to alter clamping to unclamping through temperature control within 1 second. The means and repeatability(${\sigma}$) of the tool clamping force were 185.5N and 6N respectively and its drifts were less than 3% for an hour. Considering the temperature hysteresis of the SMA-based tool clamping device, it is necessary to heat the SMA ring to around $50^{\circ}C$ after tool change to obtain more clamping force.

Skinny Smudge Tool (스키니 스머지 툴)

  • Woo, Seung-Beom;Kwak, No-Yoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.111-115
    • /
    • 2009
  • This paper is related to a skinny smudge tool based on the image segmentation for a master shape. The smudge tool is the popular graphic tool embedded in Adobe Photoshop. The smudge tool is used to smear paint on your canvas. The effect is much like finger painting. You can use the smudge tool by clicking on the smudge icon and clicking on the canvas and while holding the mouse button down, dragging in the direction you want to smudge. A disadvantage of previous smudge tool is to also smear pixels in the undesired region according to generating the target image as blending all pixels in a diameter of the master. In this paper to reduce the disadvantage, the skinny smudge tool based on the image segmentation for a master shape is proposed. The proposed skinny smudge tool has the advantage of applying the smudge effect to the desired regions regardless of the background as the master shape adhered closely to the contour shape is extracted by color image segmentation.

  • PDF

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공에서 공구형상 변화에 따른 가공성평가)

  • 하동근;강명창;김정석;김광호;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.346-351
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining field. Because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining is not close behind that of machining tool. So in this study, we made 4 types flat end mill for obtaining data according to tool shape. Especially, we concentrated in helix angle and number of cutting edge. First we confirmed cutting condition by several experiments and measuring cutting force, tool life, tool wear and chip shape according to cutting length. In results, we acquired the fact that 45 degree helix angle and six cutting edge tool is suitable for high speed machining.

  • PDF

Development of Shrink-Fit Tool Holder using Shape Memory Alloys (형상기억합금을 이용한 열박음 공구홀더 개발)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Kim, Byung-Sub;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.889-894
    • /
    • 2010
  • Conventional shrink-fit tool holders have positive features, such as high accuracy, high strength, high stiffness and low sensitivity to centrifugal forces, but they require heavy investments for heating and cooling equipment. Generally the heating equipment has to heat the tool holder up to $200{\sim}300^{\circ}C$ for tool changes. This paper introduces a novel shrink-fit tool holder that is able to unclamp a tool at $40{\sim}50^{\circ}C$. This feature makes it possible to switch between the clamped and unclamped states by using a simple device, which has lower power, smaller size and lower cost than the heating equipment of the conventional shrink-fit tool holders. The proposed shrink-fit tool holder is able to expand its tool hole by using the shape memory alloys which are integrated in the tool holder body. Performances of the SMA shrink-fit tool holder were evaluated experimentally. The experimental results confirm that the proposed tool holder is feasible in aspects of clamping/unclamping operations, clamping force and repeatability of tool setup.