• Title/Summary/Keyword: tool material

Search Result 1,961, Processing Time 0.03 seconds

Tool Holder Design and Cutting Force Measurement of Diamond Turning Process (다이아몬드 터닝의 미세 절삭력 측정을 위한 tool holder 설계 및 절삭력 측정)

  • Jeong, S.H.;Kim, S.S.;Do, C.J.;Hong, K.H.;Kim, G.H.;Rui, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.507-512
    • /
    • 2001
  • In this work, tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces.

  • PDF

Observation of Chip Shape and Tool Damage with Interrupted Cutting of Carbon Steel for Machine Structures(SM20C) (기계구조용 탄소강(SM20C)의 단속절삭시 칩의 형상 및 공구손상관찰)

  • Bae, Myung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • In interrupted cutting, the workpiece has a groove that impacts both the cutting tool and the workpiece. Therefore, cutting tool damage occurs rapidly. In this study, I performed interrupted cutting of carbon steel for machine structures (SM20C) using an uncoated carbide tool (SNMG120404, P20), and observed tool damage, cutting chip shape, and the workpiece surface. Results: Under the specific cutting conditions of feed rate = 0.066 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.1 mm; and feed rate = 0.105 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.2 mm, the observed tool damage was small. Similar chip shape was observed (Expt. No. 1, 3, 7). Workpiece damage was observed (Expt. No. 3, 5, 7, 9).

Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

Detection of the Cutting Tool's Damage by AE Signals for Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철의 AE신호에 의한 절삭공구 손상의 검출에관한 연구)

  • 전태옥;박흥식;이공영;예규현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.526-530
    • /
    • 1996
  • In this paper, three different types of commercially tools-P20, NC123K and ceramic-have been used to working austempered ductile iron(ADI). In the austempered condition the materials are hard, strong and difficult to machine. Thus, we selected a optimum tool material among three different types of used tools in machining of austempered ductile iron. It was used acoustic emission(AE) to know cutting characteristic for selected tool and flank wear land of the ceramic too. The obtained results are as follows; (1) The ceramic tool among three different types of tools is the best in machining austempered ductile iron. (2) In case of ceramic tool, the amplitude level of AE signal(AErms) is mainly affected bycutting speed in cutting speed in cutting condition and it is proportioned to cutting speed. (3) There have the relationship of direct proportion between the amplitude level of AE signal and flank wear land of the tool. (4) If it find the value of AErms at each cutting speed, the in-process detection to ceramic tool's wear is possible

  • PDF

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

A study on Finite Element Analysis of Tool Deformation in End Milling (엔드밀 가공에서의 공구 변형에 대한 유한요소해석)

  • Kim Kug Weon;Jung Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.83-86
    • /
    • 2005
  • This study is predicted tool deformation by cutting forces and chip-tool interface temperature in machining process. Modeling of tool is made using 3D CAD software, finite element method is performed by cutting forces and temperature. Cutting forces and temperature used load conditions are predicted using the cutting force model based on machining theory. Experimental milling tests have been conducted to verify the cutting force model. Finally, this study is predicted cutting force components and temperature using cutting conditions, material property, tool geometry without experiment and tool deformation is predicted by cutting forces and temperature in machining process.

  • PDF

Development of Special Tool of Boom for Heavy Equipment (중장비 붐을 가공하기 위한 특수 공구의 개발)

  • Jeong, Hwang-Young;Song, Doo-Sang;Hong, Jun-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • The purpose of this study is to develop special tools used to extend the tool life for the boom of heavy equipment. The boom of heavy equipment is manufactured by cutting the inner and outer surface with respect to the assembly site essential. In particular, when cutting the inner surface, entry of the tool is difficult owing to the limited size of the inner diameter and non circular cutting. In addition, the productivity is poor because the use of the cutting tool made of the SKH material. Therefore, it is necessary to develop a special tool for machining heavy equipment boom to extend tool life and to improve productivity. The special tool developed this study has the form of a holder and tip. The tip was created by applying a commercially available tungsten carbide insert.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process (CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Usefulness of Carbon Fiber Reinforced Plastics as a Material of Auxiliary Tool for X-ray Imaging (엑스선 촬영 시 보조도구 재료로써 탄소 섬유 강화 플라스틱의 유용성)

  • Joon-Ho Moon;Bon-Yeoul Koo
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.197-205
    • /
    • 2023
  • When taking X-rays, various auxiliary tools were used to fix a patient's exact shooting position and posture. In this study, we evaluated the usefulness of carbon fiber reinforced plastics(CFRP) 3K as a material of auxiliary tools by comparing poly methyl metha acrylate(PMMA), polycarbonate(PC), and CFRP 3K each of which has high radiolucency. X-ray radiolucencies were measured by stacking 1 mm panels of each material, and contrast to noise ratio(CNR) and signal to noise ratio(SNR) of images of each material were measured by comparing with None, which stands for images that are taken without any material. All three materials showed over 90% X-ray radiolucencies within 2 ㎜ thickness, and there was no significant difference. PC, PMMA and CFRP 3K had high CNR and SNR in order, and CFRP 3K showed the closest CNR and SNR to those of None. While taking X-rays, by using CFRP 3K material within 2 ㎜ thickness as a material of auxiliary tools, which are used to reduce re-shooting and X-ray exposure by fixing a patient's exact shooting position and posture and improve the quality of medical images, a high X-ray radiolucency of over 90% would be obtained, and the influence on the image could be minimized.