• Title/Summary/Keyword: tool improvement

Search Result 1,660, Processing Time 0.032 seconds

CRISPR/CAS9 as a Powerful Tool for Crop Improvement

  • Song, Jae-Young;Nino, Marjohn;Nogoy, Franz Marielle;Jung, Yu-Jin;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Implementation of crop improvement programs relies on genetic diversity. To overcome the limited occurrence of natural mutations, researchers and breeders applied diverse methods, ranging from conventional crossing to classical bio-technologies. Earlier generations of knockout and gain-of-function technologies often result in incomplete gene disruption or random insertions of transgenes into plant genomes. The newly developed editing tool, CRISPR/Cas9 system, not only provides a powerful platform to efficiently modify target traits, but also broadens the scope and prospects of genome editing. Customized Cas9/guide RNA (gRNA) systems suitable for efficient genomic modification of mammalian cells or plants have been reported. Following successful demonstration of this technology in mammalian cells, CRISPR/Cas9 was successfully adapted in plants, and accumulating evidence of its feasibility has been reported in model plants and major crops. Recently, a modified version of CRISPR/Cas9 with added novel functions has been developed that enables programmable direct irreversible conversion of a target DNA base. In this review, we summarized the milestone applications of CRISPR/Cas9 in plants with a focus on major crops. We also present the implications of an improved version of this technology in the current plant breeding programs.

Effect of Structured Information Provided on Self Care Knowledge, Self Care Performance, and Functional Status of Liver Cirrhosis Patients (구조화된 정보제공이 간경변증 환자의 자가간호 지식과 자가간호 수행, 기능상태에 미치는 영향)

  • Jung, Kyong-Sun;Min, Hye-Sook;Song, Young-Sun
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Purpose: The purpose of this study was to identify the effects of structured information provided on self care knowledge, self care performance, and functional status. Method: The data were collected using self care knowledge and performance assessment tool, and functional status assessment tool from both group hospitalized patients at D hospital in Busan. Results: There was a significant improvement(p=.032) in self care knowledge in experimental group compared to the control group. But there were not improvement in self care performance and functional status in experimental group compared to the control group. But comparing to pretest and posttest in experimental group, There were significant improvement in self care performance (p=.003) and functional status(p=.013). Conclusion: Structured information provided showed increased in the degree of knowledge, self care performance, and functional status. But the effect size of program which had been developed in this study was estimated small, so there is needed to modify this program and to research repeatedly.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Performance Assessment and Contouring Error Prediction of High Speed HMC (고속 HMC 이송계의 운동특성 평가 및 운동오차 예측)

  • 최헌종;허남환;강은구;이석우;홍원표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.375-381
    • /
    • 2004
  • Recently, the evolution in production techniques (e.g. high-speed milling) and the complex shapes involved in modem production design has been increasingly popular. The key to the achievement is a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. The more complex these tool paths the higher the speed and acceleration requirements. But it is very difficult to reach the target for high speed machine tool because of the limitations of servo system and motion control system. However the direct drive design of machine tool axes, which is based on linear motors and which recently appeared on the market, is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, more mechanical simplicity and very higher acceleration and velocity comparing to the traditional system. This paper focused on the performance tests of the high speed horizontal machine tool based on linear motor. Especially, dynamic characteristics were investigated through circular test and circular form machining test is carried out considering many important parameter. Therefore these several experiments is used to be evaluated the model for prediction of circular motion error and circular machined error.

  • PDF

The Design Optimization of LCD Panel Bonding Equipment by Design of Experiment (실험계획법을 이용한 LCD 압착장비의 설계최적화)

  • Hwang, Il-Kwon;Kim, Dong-Min;Chae, Soo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.92-98
    • /
    • 2010
  • The design of press bonding tool in LCD module equipment is a very complex and difficult task because many design able variables are involved while their effects are not known. It takes longtime experiments and much expenses to verify the effects of these design variables. However the optimization of bonding tool using OLB(outer lead bonding) and PCB Bonding is a very important problem in LCD manufacturing process, so much design efforts have been made for improving the bonding tool performance. In this paper, a reasonable and fast process which gives optimized solution under the design requirements has been presented. Both analytical and statistical methods are employed in this process. A reliable analytic model using experiment-oriented FE analysis can be obtained, in which the regression equations that predict the tool efficiency from various DOE method are found. Improvement of tool efficiency could be estimated by the regression equations using meaningful factors converged by RSM(Response Surface Method). With this process a reasonable optimized solution that meets a variety of design requirements can be easily obtained.

Design Alteration of a Milling Machine Structure for the Improved Stability (동적 안정성 향상을 위한 밀링 머신의 구조개선)

  • Ro, Seung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.72-78
    • /
    • 2006
  • Inherent in machine tool structures are the vibrations which are generated by rotating parts such as motors, spindles and chucks. The vibrations not only hurt the precision machining but also damage the structures, and become more serious with time. Many of the old machine tools show severe vibrations for the desired accuracy of the modern industries. It is too much of a waste, however, to get rid of them as scraps. There have been many researches in order to suppress the vibrations of old machine tool structures using the tool post which utilizes actuators to compensate the existing vibrations and using the dampers or absorbers attached to some critical parts. In this paper, the dynamic properties are analyzed to obtain the natural frequencies and mode shapes of a machine tool structure which reflect the main reasons of the biggest vibrations under the given operating conditions. And the feasibility of improving the stability of the structure has been investigated with minor design changes and expenses. The result of the study shows that simple changes based on proper system identification can considerably improve the stability of the machine tool structure.

  • PDF

A study on the vibration cutting of high-hardness mold steel (고경도 금형강의 진동 가공에 대한 연구)

  • Kim, Jong-Su
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.

An Empirical Study on the Six Sigma's Effects on Quality Circles (6시그마가 품질분임조 활동에 끼친 영향에 대한 실증 연구)

  • 구일섭;김태성;임익성
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In 1999, Six Sigma was introduced into Korea and after that it had general influence on company-wide management system. Quality Circles apply the various quality problem solving techniques such as QC 7 Tool, New QC 7 Tool, and statistical methods to rationalization, improvement in the shop floor. This paper empirically investigates the effects of Six Sigma on Quality Circles by analyzing the difference of problem solving technique's use. The number of teams employed in this study is 342, which participate in National Quality Circles Contest from 1997 to 2002 in Korea.