• Title/Summary/Keyword: tool

Search Result 30,466, Processing Time 0.052 seconds

Deformation analysis of Tool and Tool holder for Micromachining by FEM (FEM을 이용한 Micromachining용 Tool 및 Tool holder의 변형해석)

  • Min, Kyung-Tak;Jang, Ho-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Micromachining technology using a ultra-precision micromachining system is widely applied in the fields of optics, biotechnology and analytical chemistry, etc. specially in microfabrication of fresnel lens, light guide panels of TFT-LED and PDP ribs with micro-patterns, machining errors have an effect on the performance of those products. The deflection of tool and tool holder is known to be one of the very important factors that is due to machining errors in micromachining. The deflections of diamond tool and tool holder used in micro-grooving are analysed by FEM. We analysed by FEM. With an linearity valuation of FEM, deflection of tool and tool holder is calculated by using the data of cutting force which is acquired from micro-V groove machining experiments in micromachining system.

Cutting Performance of TiAlN coated WC Insert Tip (TiAlN을 코팅한 WC공구의 절삭성능에 관한 연구)

  • 김형자;최현철;이규용
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.281-286
    • /
    • 2001
  • TiAIN was deposited onto ISO P2O Cutting Insert Tip substrate by FVAS at the substrate temperature of 80$^{\circ}C$. Cutting and wear test have been performed with TiAIN coated and uncoated WC cutting tools, respectively. Uncoated WC cutting tool has been tested under similar cutting condition for comparison. Cutting force and tool wear of coated and uncoated carbide cutting tools were investigated by cutting length. In cutting test, cutting force of the coated insert tip was larger than the uncoated insert tip by tool wear. Configuration and wear of the coated tool were more stable and resistant than the uncoated. In tool life by the tool wear, the coated cutting tool life was rather longer than the uncoated when tested at high speed (V=250 m/min) than low speed (V=200 m/min), Cutting force, tool wear and life were analysised by tool dynamometer amp(3ch) and oscilloscope.

  • PDF

A Study on the Tool Temperature Estimation for Different Cutting Conditions in Turning Using a Statistical Method (통계적 기법을 이용한 선삭가공 절삭조건에 따른 공구온도 예측)

  • 송길용;문홍현;박병규;김성청;이응석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.96-102
    • /
    • 2002
  • This study is on the estimation method of toot temperature for different tool nose radius and cutting conditions in turning. Experimental analysis has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using a thermo-couple which is embedded in the insert tip. Using multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for the different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for a tool temperature estimation technique. The result indicates that the tool temperature decreases for increasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut. This method will be useful for the estimation of tool life and temperature using limited experimental data for given cutting conditions.

Determination of Cutting Direction for Tool Path Minimization in Zigzag Milling Operation (Zigzag 밀링가공에서 공구경로 최소화를 위한 가공방향 결정방법)

  • Kim, Byoung-Keuk;Park, Joon-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.69-88
    • /
    • 2001
  • In the zigzag milling operation, an important issue is to design a machining strategy which minimizes the cutting time. An important variable for minimization of cutting time is the tool path length. The tool path is divided into cutting path and non-cutting path. Cutting path can be subdivided into tool path segment and step-over, and non-cutting path can be regarded as the tool retraction. We propose a new method to determine the cutting direction which minimizes the length of tool path in a convex or concave polygonal shape including islands. For the minimization of tool path length, we consider two factors such as step-over and tool retraction. Step-over is defined as the tool path length which is parallel to the boundary edges for machining area and the tool retraction is a non-cutting path for machining any remaining regions. In the determination of cutting direction, we propose a mathematical model and an algorithm which minimizes tool retraction length in complex shapes. With the proposed methods, we can generate a tool path for the minimization of cutting time in a convex or concave polygonal shapes including islands.

  • PDF

Optimal Tool Length Computation of NC Data for 5-axis Ball-ended Milling (5축 볼엔드밀 가공 NC 데이터의 최적 공구 길이 계산)

  • Cho, Hyeon-Uk;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • The paper presents an efficient computation of optimal tool length for 5-axis mold & die machining. The implemented procedure processes an NC file as an initial input, where the NC data is generated by another commercial CAM system. A commercial CAM system generates 5-axis machining NC data which, in its own way, is optimal based on pre-defined machining condition such as tool-path pattern, tool-axis control via inclination angles, etc. The proper tool-length should also be provided. The tool-length should be as small as possible in order to enhance machinability as well as surface finish. A feasible tool-length at each NC block can be obtained by checking interference between workpiece and tool components, usually when the tool-axis is not modified at this stage for most CAM systems. Then the minimum feasible tool-length for an NC file consisting of N blocks is the maximum of N tool-length values. However, it can be noted that slight modification of tool-axis at each block may reduce the minimum feasible tool-length in mold & die machining. This approach can effectively be applied in machining feature regions such as steep wall or deep cavity. It has been implemented and is used at a molding die manufacturing company in Korea.

Roughness Characteristics of Turned Surface by Wiper Tool (Wiper 공구에 의한 선삭가공시 표면거칠기 특성)

  • Lee, Young-Moon;Ryu, Chung-Won;Son, Jae-Hwan;Kim, Sun-Il;Jung, Hee-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2008
  • Until a recent date, the surface finish generated in turning by the conventional cutting tool is directly related to the feed rate and the size of the tool nose radius. With this tool a large feed rate will give poorer surface finish and a large nose radius will generate a better surface finish. Recently a new concept in the tool design is introduced to achieve a better surface finish at a higher feed rate. This is the wiper tool, which has the portion of nose with infinite radius. This can remove the ridges left when the conventional tool is used. In this study two series of cutting tests with the wiper tool and the conventional tool are carried out under the various cutting conditions of cutting depth, feed rate and cutting speed. The effects of the wiper design and the cutting conditions on the surface roughness resulted are carefully examined and compared.

  • PDF

Cutting Characteristics of the ZrN Coated Tool (지르코늄 코팅공구의 절삭특성)

  • Seol Han-Wook;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 2006
  • Zirconium is widely applied in industrial area. In this study, the exeperiments are performed to investigate the differences in cutting characteristics of zirconium coated material which deposited on cutting tool using physical vapor deposition(PVD). For comparison, TiN coated tool is used to compare with zirconium coated tool. Experimental results were compared for tool wear, surface roughness and cutting force. The tool wear of PVD coated bites is affected by the various cutting conditions. This new stuff 'zirconium coated tool' wears $33\%$ less and improves surface roughness $23\%$ more in various cutting conditions. Cutting force is analyzed by using various workpiece, and the research strongly confirms that 'zirconium' remains better condition than 'titanium'. As a result 'zirconium' coated tool can be performed far better than 'titanium' coated tool on metal cutting.

A Study on the Improvement of Performance for High Speed Cutting Tool using Magnetic Fluid Polishing Technique (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구)

  • Cho, Jong-Rae;Yang, Sun-Cheul;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2006
  • The magnetic fluid polishing technique can polish the tool of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. Therefore, we producted the magnetic fluid polishing device in order that mirror like finishing processes the tool surface. In order to a polishing condition selection, polishing characteristic was estimated by polishing conditions which are magnetic flux density, polishing speed, grain size, magnetic fluid. The tool was polished to the selected polishing condition. The result to evaluate the polished tool's performance with the cutting force and tool wear, the polished tool's performance was improved compared with the tool not to polish.

Machining of Wc-Co alloys with diamond tool (다이아몬드공구에 의한 초경합금의 절삭)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.102-111
    • /
    • 1997
  • This paper deals with the machinability based on turning of WC-Co allows with the coated and the sintered diamond tools. The main conclusions obtained are as follows. (1) When machining WC-10%Co alloy, the flank wear of sintered diamond tool increases more largely with the increase of cutting speed in comparison with coated diamond tool. The tool wear decreases with the increase of the grain size and nose radius of sintered diamond tool. (2) When machining WC-20%Co alloy, the tool wear and cutting force decrease with the decrease of rake angle. Their exists a certain cutting speed range to exhibit the smallest tool wear in machining the WC-20%Co alloy, and this critical cutting speed becomes higher by 2 times in the case of coated diamond tool compared with sintered diamond tool. (3) The machinability becomes better with the increase of Co content. The effects of cutting speed and feed rate on the roughness of machined surface become smaller with the increase of Co content.

  • PDF

Development of a Tool Life Prediction Program for Increasing Reliability of Cutting Tools (공구의 신뢰성 향상을 위한 수명 예측 프로그램 개발)

  • Kim Bong-Suk;Kang Tae-Han;Kang Jae-Hun;Song Jun-Yeob;Lee Soo-Hun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • The prediction for tool life is one of the most important factors for increasing reliability, stability, and productivity of manufacturing system. This paper deals with a tool life prediction method in view of reliability assessment for cutting tools. In this study, flank wear was focused among multi-factors deciding the tool wear state. First, tool life was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning, including parameters of cutting speed, feed rate, and cutting depth. Second, each of cutting conditions of end-milling was equivalently converted to apply ball end-mill data to the extended Taylor equation. The web-based prediction program for tool life was developed as one of reliability assessment programs for machine tools.