• Title/Summary/Keyword: toluene

Search Result 1,854, Processing Time 0.031 seconds

Influence of the Type of Curing Agent on Swelling Behavior of Natural Rubber Foam (가교제의 종류가 천연고무 발포체의 팽윤거동에 미치는 효과)

  • Lee, Hwan-Kwang;Chung, Tea-Kyung;Kim, Sung-Chan;Kim, Hyun-Gi;Choi, Kyung-Man;Kim, Young-Min;Han, Dong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1775-1781
    • /
    • 2008
  • The effects of the type of curing agent on the swelling of the natural rubber(NR) sponge applicable to the self-sealing layer of a helicopter fuel tank were investigated. The curing systems employed were peroxide and mixed ones of sulfur and peroxide. The NR compounds were prepared in a kneader and a roll-mill. The compounds were partially cured in a press at high pressure and subsequently cured fully with expansion in another press at atmospheric pressure. The apparent density of the NR sponge was measured and the cell structure was observed with scanning electron microscopy. The swelling experiments were performed at room temperature using toluene, iso-octane, and an aircraft fuel as a solvent. More rapid volume swelling of the NR sponge cured by peroxide was achieved than cured by sulfur and peroxide with similar amount of curing agent added in rubber compounds. The apparent density and cell structure of the sponge were extremely sensitive to the amount of peroxide, which influences again the swelling behavior of the NR sponge. It is important to control properly two reactions of decomposition of foaming agent and crosslinking of NR in the mold to obtain rapid swelling of the NR sponge on contact of the fuel.

An Evaluation of the Fire and Explosion Effect by BTX released in a Chemical Plant (화학공장에서의 BTX누출에 의한 화재$\cdot$폭발 영향 평가)

  • Park Ki-Chang;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.9-18
    • /
    • 2000
  • Accident analysis are useful in the design stage of chemical plants and their surrounding structures. Also, analysis results are required for safety management of existing plants. In this paper, the fire and explosion effect by BTX released was evaluated. The computer program was prepared for accident analysis and adopted for evaluating the magnitude of fire (pool fire) and explosion (UVCE) effect. The thermal radiation was used as a measure of fire magnitude and the overpressure as a measure of explosion magnitude. And probit analysis was made for each case. As a case study, benzene tank model was used. The simulation results of explosion of benzene showed that the damage within 20 meters from the accident spot was severe and the damage beyond 60 meters was negligible. The simulation results of fire of benzene showed that the damage in summer is bigger than that in winter. And the damage of city located inland seems to be bigger than that of city in seaside. And thermal radiation effects was negligible beyond 40 meters-distance from the accident spot.

  • PDF

Characteristics of pollutant emission from wallpapers - Around TVOC and HCHO - (벽지에서 발생되는 오염물질 방출특성 - TVOC와 HCHO를 중심으로 -)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.542-551
    • /
    • 2005
  • This study is to investigate the characteristics of emission concentration according to wallpaper sort and emission time using small chamber method. The target compounds included 45 VOCs and formaldehyde, which were respectively determined by adsorption sampling and thermal desorption coupled with GC/MS method, and by sampling in DNPH cartridge and HPLC method. The emission factor of TVOC and HCHO was detected to $1.1mg/m^2{\cdot}h$ and $0.01mg/m^2{\cdot}h$ respectively, and the wallpapers of 25 satisfied emission standard. TVOC emission factor appeared in order of the concentration of PVC, natural, and Non-PVC wallpaper, while HCHO was detected very low concentration without relation to wallpaper sort. The paraffin hydrocarbons appeared to be the most contributable class of hydrocarbons in terms of their concentrations, followed by aromatics, and olefins, halogenated hydrocarbons was not detected. PVC wallpapers plentifully emitted TVOC above other wallpapers, and toluene was showed higher concentration of 10 times than natural wallpaper. In addition to, emission factor according to elapse was gradually decreased.

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Efficiency Assessment of Wastewater Treatment Plant and Groundwater Level by Pump and Treat Technology Applied for Petroleum Contaminated Site (유류오염 지하수 정화를 위한 양수처리법 적용시 지하수위 변화 및 수처리장치의 효율평가)

  • Cho, Chang-Hwan;Kim, Joon-Ho;Park, Min-Kyu;Kim, Tae-Hyung;Choi, Yoen-Soo;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2014
  • This study was performed to evaluate the applicability of pump and treat technology as well as to identify the changes of groundwater level by continuous pumping at the petroleum contaminated site. A total of 9 monitoring wells were installed at the site and the contaminant concentrations, TPH, benzene, toluene, ethylbenzene and xylene, of groundwater were measured. With the results of the groundwater monitoring, a total of 9 wells were set up for pumping contaminated groundwater in 3 locations. The waste water treatment facility with a capacity of $10m^3/hr$ was installed in the site and operated for about 1 year. The concentrations of the contaminated groundwater from the 3 pumping wells were exceeded groundwater regulation for benzene and TPH. However, the effluent concentration of benzene and TPH was under the regulation showing the maximum level of 0.011 mg/L and 1.2 mg/L during the operation periods. Groundwater levels were decreased by continuous pumping and those were not recovered during the operation period. Groundwater levels of PW-1,2, PW-3,4,5,6 and PW-7,8,9 were decreased about 5 m, 0.7 m, 2 m, respectively. The hydraulic conductivity (K) of the region of PW-1,2, PW-3,4,5,6 and PW-7,8,9 was estimated to be $6.143{\times}10^{-5}cm/sec$, $2.675{\times}10^{-5}cm/sec$, $1.198{\times}10^{-4}cm/sec$. Groundwater level was seemed to be affected not by hydraulic conductivity but by morphological effect. These results show that the pump and treat technology has high applicability for the restoration of petroleum contaminated groundwater but needs continuous monitoring to prevent rapid groundwater drawdown.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

Comparison of the Hydrolysis Rate of Several Polyol Ester Oils as a Candidate for Environmentally Adapted Synthetic Base Oil (환경친화적인 합성기유 후보물질로서의 몇가지 폴리올에스터 오일의 가수분해속도 비교)

  • 한두희;마사부미마스꼬
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.162-177
    • /
    • 2001
  • The hydrolysis rates of seven kinds of polyol ester base oils 〔POEs〕 of different branch shape were investigated by using a simple apparatus under mild acidic condition. Seven polyol ester base oils were made of poly hydric alcohols of two-four valence, normal or branched fatty acids of different carbon number. p-Toluene sulfonic acid was used as acid catalyst to accelerate the rate of hydrolysis. Partial esters and fatty acid produced by sequential hydrolysis of POEs were identified and their concentrations were determined by calibrated-internal standard method using Gas Chromatography. The rate constants of each step in sequential hydrolysis were determined by the least square method from rate equation and the concentration of each component, were compared with one another. It was shown that the rate of hydrolysis of POEs was strongly affected by whether molecular structure of fatty acid was straight chain or branch chain and which position was branched. The hydrolysis stability for all the POEs can be reasonably explained by using a steric hindrance effect anticipated fi:om their molecular structures affecting as water molecule makes an attack on the carbonyl carbon of POEs.

  • PDF

The Sampling Efficiencies of Volatile Organic Compounds(VOCs) to the Diffusive Monitor with Activated Carbon Fiber (활성탄섬유를 이용한 확산포집기의 공기 중 유기용제 포집효율에 관한 연구)

  • Byeon, Sang-Hoon;Park, Cheon-Jae;Oh, Se-Min;Lee, Chang-Ha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.187-201
    • /
    • 1996
  • This study was to evaluate the efficiency of diffusive monitor using activated carbon fiber(ACF, KF-1500) in measuring airborne organic solvents. The following characteristics were identified and studied as critical to the performance of diffusive monitor; recovery, sampling rate, face velocity, reverse diffusion and storage stability. For the evaluation of the performance of this monitor, MIBK, PCE, toluene were used as organic solvents. In the sampling rate experiments, eight kinds of solvents (n-hexane, MEK, DIBK, MCF, TCE, CB, xylene, cumene) as well as the above solvents were used. The results were as follows: 1. The desorption efficiencies(DE's) of ACF diffusive monitor ranged from 83 % to 101 %. In contrast, those of coconut shell charcoal ranged from 78 % to 102 %. Especially, the DE's of ACF for the polar solvents such as MEK were superior to those of charcoal. 2. Experimental sampling rates on ACF were average 42ml/min(37-46ml/min) for 11 organic solvents at $24{\pm}2^{\circ}C$, $50{\pm}5%RH$. However ideal sampling rates(DA/L) were 33 % higher than experimental sampling rates. 3. The initial response(15~16 min) of the testing monitor was 2 times higher than the actual concentration determined by the reference methods at $24{\pm}2^{\circ}C$, $8{\pm}5%RH$ and $80{\pm}5%RH$. Within 1 hours, the curve reached a linear horizontal line at low humidity condition. But sampling efficiencies decreased with respect to time at high humidity condition. And sampling efficiencies were higher at high humidity condition than low humidity condition for MIBK. 4. At very low velocity (less than 0.02 m/sec), the concentration of ACF diffusive monitor were poorly estimated. But ACF diffusive monitor were not affected at higher velocity(0.2 m/sec-0.6 m/sec). 5. There was no significant reverse diffusion when the ACF monitors were exposed to clean air for 2 hours after being exposed for 2 hours at the level of 1 TLV. 6. There was no significant sample loss during 3 weeks of storage at room temperature and 5 weeks of storage at refrigeration.

  • PDF

Performance of Institute of Occupational Health, Korean Industrial Health Association in Proficiency Analytical Testing Program (대한산업보건협회 산업보건연구소의 PAT 정도관리 참여결과)

  • Lee, Jun-Seong;Yoo, Ho-Kyum;Oh, Mi-Soon;Park, Wha-Me;Yun, Gi-Sang;Choi, Ho-Chun;Chung, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.313-321
    • /
    • 1996
  • Our laboratoy has been participated in Proficiency Analytical Testing (PAT) program which is operated by the Americal Industrial Hygiene Association in cooperation with the National Institute for Occupational Safety and Health (NIOSH). The program is designed to assist a laboratory improve its analytical performance by providing samples on a quarterly basis, evaluating the results, and providing reports on how well the laboratory performed. Evaluation of the results reported here covers five rounds of the PAT program (round 121~round 125). The way a laboratory is evaluated by PAT program is as follows: 1) There is no overall proficiency rating given to a laboratory. 2) A proficiency rating is given for each type of analyze (i.e., metals, silica, asbestos, solvents) that a laboratory analyzed. 3) Proficiency is rated acceptable ("A") if Z score lies between -3 and +3, and unacceptable if Z score is either higher than +3 ("H") or lower than -3 ("Lo"). Z score = (reported data - reference value) / standard deviation 4) For a laboratory to be rated proficient it must either have had no outliers over the most recent two rounds or of the samples actually analyzed over the past year (past four rounds), 75 % or more of the analyze sample results must be acceptable. According to the above rating criteria of PAT program, performance of metals including cadmium, lead, chromium and zinc, and asbestos sample analyses were rated acceptable ("A"). For silica analyses, all samples except one out of four samples in round 122 was rated high("H") were acceptable showing 95 % of ing 95 % of acceptance rate (19/20) throughout the rounds. Analyses of organic solvents were done on 52 samples in 9 types including methanol(MOH), 1,1,1-trichloroethane(MCM), tetrachloroethylene(PCE), trichloroethylene(TCE), benzene(BNZ), o-xylene(OXY), toluene(TOL), chloroform(CFM), 1,2-dichloroethane(DCE). All samples analyzed were rated acceptable except 2 samples that were rated high; one out of each four MCM and TCE samples in round 121, and one that was low out of four o-xylene analyses in round 122 indicating 94 % of acceptance rate(49/52) throughout the rounds. According to the laboratory rating criteria, our laboratory is rated proficient so far for all types of contaminants.

  • PDF

A Study on Desorption Efficiency for Polar Solvents Collected on Charcoal Tube (활성탄관에 포집된 극성유기용제의 탈착효율에 관한 연구)

  • Kim, Kyeong-Ran;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.104-118
    • /
    • 1995
  • This study was performed to evaluate factors affecting desorption of organic solvents collected on charcoal tube and to find out the optimum condition. Desorption efficiency for polar analytes was improved when several polar desorption solvents such as methanol, dimethylformamide(DMF), 2-(2-butoxyethoxy)ethanol were added to carbon disulfide($CS_2$). The best improvement was achieved when 10% dimethylformamide(DMF) in $CS_2$ was used as desorption solvent. During storage of polar analytes, recovery was greatly reduced. Especially, the recovery of cyclohexanone was decreased to 18.1 % after a month storage at $34^{\circ}C$. After two weeks storage, recovery of polar analytes was sharply decreased. Water adsorbed on charcoal interfered the recovery of polar analytes but didn't interfere that one of nonpolar solvent, toluene. When 10% DMF in $CS_2$ was used as desorption solvent, the effect of water on recovery was decreased, comparing with Desorption efficiency increased when analyte loading increased, and usage of 10% DMF in $CS_2$ decreased the loading effect. Increasing volume of desorption solvent was not effective to improve desorption efficiency of analytes when 10% DMF was used. Continuous shaking and sonication is not helpful to increase the desorption efficiency of analytes except cyclohexanone using 10% DMF. When silica gel used as adsorbent, methanol was better desorbent than dimethylsulfoxide. Analytes adsorbed on silica gel showed high recovery in low concentration and less affected by humidity. On the basis of this study, the following conclusions have been drawn. To improve the recovery of polar organic materials in air samples, it is necessary to analyze samples as soon as possible after they were collected. Otherwise, samples must be stored at low temperature. Using two components of desorption solvents, such as 10% DMF in $CS_2$, the effects of loading and humidity decreased for polar analytes such as methyl ethyl ketone and methyl isobutyl ketone. When work place has high humidity with low concentration of polar organic solvents, silica gel can be used as adsorbent, because it produces quantitative recovery for polar analytes at this condition. But it should be noted that high humidity makes breakthrough easy in silica gel samples.

  • PDF