• Title/Summary/Keyword: toll-like receptors(TLRs)

Search Result 76, Processing Time 0.022 seconds

Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

  • Seong, Kyung-Joo;Lee, Hyun-Gwan;Kook, Min Suk;Ko, Hyun-Mi;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activating TLR4-NF-${\kappa}B$ signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-${\kappa}B$ pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPS-induced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.

Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression

  • Ahn, Huijeong;Han, Byung-Cheol;Kim, Jeongeun;Kang, Seung Goo;Kim, Pyeung-Hyeun;Jang, Kyoung Hwa;So, Seung Ho;Lee, Seung-Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.291-299
    • /
    • 2019
  • Background: Ginsenosides of Korean Red Ginseng extracts (RGE) and its saponin components suppress secretion of inflammasome-mediating cytokines, whereas the nonsaponin fraction (NS) of RGE oppositely stimulates cytokine secretion. Although direct exposure of NS to macrophages in mice induces cytokine production, oral administration of NS has not been studied in inflammasome-related disease in animal models. Methods: Mice were fed RGE or NS for 7 days and then developed peritonitis. Peritoneal cytokines were measured, and peritoneal exudate cells (PECs) were collected to assay expression levels of a set of toll-like receptors (TLRs) and cytokines in response to NS ingestion. In addition, the role of intestinal bacteria in NS-fed mice was assessed. The effect of preexposure to NS in bone marrow-derived macrophages (BMDMs) on cytokine production was further confirmed. Results: NS ingestion attenuated secretion of peritoneal cytokines resulting from peritonitis. In addition, the isolated PECs from NS-fed mice presented lower TLR transcription levels than PECs from control diet-fed mice. BMDMs treated with NS showed downregulation of TLR4 mRNA and protein expression, which was mediated by the $TLR4-MyD88-NF{\kappa}B$ signal pathway. BMDMs pretreated with NS produced less cytokines in response to TLR4 ligands. Conclusion: NS administration directly inhibits TLR4 expression in inflammatory cells such as macrophages, thereby reducing secretion of cytokines during peritonitis.

Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells

  • Lee, Jaewon;Jeon, Sumin;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.190-199
    • /
    • 2021
  • Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

Association of SNPs from iNOS and TLR-4 Genes with Economic Trait in Chicken (닭의 iNOS와 TLR-4 유전자 내 변이와 경제 형질 간의 연관성 분석)

  • Lim, Hee Kyong;Han, Jung-Min;Oh, Jae Don;Lee, Hak Kyo;Jeon, Gwang Joo;Lee, Jun Heon;Seo, Dong Won;Cahyadi, Muhammad;Song, Ki Duk;Choi, Kang Duk;Kong, Hong Sik
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.83-89
    • /
    • 2013
  • iNOS (Inducible nitric oxide synthase) and TLR-4 (Toll-like Receptor-4) play crucial roles in innate immunity of poultry. iNOS has been mapped to chicken chromosome 14 and implicated in a variety of chicken diseases. iNOS possesses potent antimicrobial activity, including the inhibition of microbes replication in vitro. TLR-4 is a pathogen associated molecular-pattern receptor for bacterial product, such as LPS (lipopolysaccharides) found in Gram negative bacteria, that triggers pro-inflammatory cytokine expression after engagement with ligands. In the previous studies, genetic analysis of iNOS and TLR-4 revealed the possible association of mutation in these genes with the intestinal microflora of cecum when infected with Salmonella spp. This study was aimed to augment previous findings, which show the association of iNOS (C14513T) and TLR-4 (G4409T) polymorphisms with economic traits in Korean Native Black (KNB), Rhode Island Red (RIR) and Cornish chickens. Investigation in the effect of SNPs on economic traits (layday, layw, layno, bw150, bw270, layw270) was conducted. iNOS (C14513T) had a significant effect on the average body weight at 270 days of age (p<0.05) in both KNB and RIR, whereas TLR-4 (G4409T) showed no significant correlation with all traits (p>0.05). The results obtained from using the candidate genes can be useful for the genetic improvement of body weight in both KNB and RIR breeds.

Differential Expression of Th1- and Th2- Type Cytokines in Peripheral Blood Mononuclear Cells of Murrah Buffalo (Bubalus Bubalis) on TLR2 Induction by B. Subtilis Peptidoglycan

  • Shah, Syed M.;Ravi Kumar, G.V.P.P.S.;Brah, G.S.;Santra, Lakshman;Pawar, Hitesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1021-1028
    • /
    • 2012
  • Peripheral blood mononuclear cells (PBMCs) discriminate microbial pathogens and induce T-cell responses of appropriate effector phenotype accordingly. Toll-like receptors (TLRs), in part, mediate this microbial recognition and differentiation while the development of T-cell effector functions critically depends on the release of Th1- or Th2- type cytokines. In the present study, buffalo PBMCs were stimulated under in vitro culture conditions by Bacillus subtilis cell wall petidoglycan, a TLR2 ligand, in a dose- and time- dependent manner. The expression of TLR2 as well as the subsequent differential induction of the Th1 and Th2 type cytokines was measured. Stimulation was analyzed across five doses of peptidoglycan ($10{\mu}g/ml$, $20{\mu}g/ml$, $30{\mu}g/ml$, $40{\mu}g/ml$ and $50{\mu}g/ml$) for 3 h, 12 h, 24 h and 36 h incubation periods. We observed the induction of TLR2 expression in a dose- and time-dependent manner and the peptidoglycan induced tolerance beyond $30{\mu}g/ml$ dose at all incubation periods. The correlation between peptidoglycan stimulation and TLR2 induction was found positive at all doses and for all incubation periods. Increased production of all the cytokines was observed at low doses for 3 h incubation, but the expression of IL-4 was relatively higher than IL-12 at the higher antigen doses, indicating tailoring towards Th2 response. At 12 h incubation, there was a pronounced decrease in IL-4 and IL-10 expression relative to IL-12 in a dose- dependent manner, indicating skewing to Th1 polarization. The expression of IL-12 was highest for all doses across all the incubation intervals at 24 h incubation, indicating Th1 polarization. The relative expression of TNF-${\alpha}$ and IFN-${\gamma}$ was also higher while that of IL-4 and IL-10 showed a decrease. For 36 h incubation, at low doses, relative increase in the expression of IL-4 and IL-10 was observed which decreased at higher doses, as did the expression of all other cytokines. The exhaustion of cytokine production at 36 h indicated that PBMCs became refractory to further stimulation. It can be concluded from this study that the cytokine response to sPGN initially was of Th2 type which skews, more pronouncedly, to Th1 type with time till the cells become refractory to further stimulation.

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan;Sun, Rui;Qiao, Xiangjin;Xu, Cuicui;Shang, Xiaoya;Niu, Weining;Chao, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.