• 제목/요약/키워드: toll like receptor

검색결과 300건 처리시간 0.03초

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

  • Guo, Yijie;Fukuda, Tomokazu;Nakamura, Shuichi;Bai, Lanlan;Xu, Jun;Kuroda, Kengo;Tomioka, Rintaro;Yoneyama, Hiroshi;Isogai, Emiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.273-279
    • /
    • 2015
  • Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation.

Toll-like Receptor 2 is Dispensable for an Immediate-early Microglial Reaction to Two-photon Laser-induced Cortical Injury In vivo

  • Yoon, Heera;Jang, Yong Ho;Kim, Sang Jeong;Lee, Sung Joong;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.461-465
    • /
    • 2015
  • Microglia, the resident macrophages in the central nervous system, can rapidly respond to pathological insults. Toll-like receptor 2 (TLR2) is a pattern recognition receptor that plays a fundamental role in pathogen recognition and activation of innate immunity. Although many previous studies have suggested that TLR2 contributes to microglial activation and subsequent pathogenesis following brain tissue injury, it is still unclear whether TLR2 has a role in microglia dynamics in the resting state or in immediate-early reaction to the injury in vivo. By using in vivo two-photon microscopy imaging and $Cx3cr1^{GFP/+}$ mouse line, we first monitored the motility of microglial processes (i.e. the rate of extension and retraction) in the somatosensory cortex of living TLR2-KO and WT mice; Microglial processes in TLR2-KO mice show the similar motility to that of WT mice. We further found that microglia rapidly extend their processes to the site of local tissue injury induced by a two-photon laser ablation and that such microglial response to the brain injury was similar between WT and TLR2-KO mice. These results indicate that there are no differences in the behavior of microglial processes between TLR2-KO mice and WT mice when microglia is in the resting state or encounters local injury. Thus, TLR2 might not be essential for immediate-early microglial response to brain tissue injury in vivo.

Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma

  • Junliang Ma;Yijun Luo;Yingjie Liu;Cheng Chen;Anping Chen;Lubiao Liang;Wenxiang Wang;Yongxiang Song
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.61-73
    • /
    • 2023
  • Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.

Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과 (Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways)

  • 윤형선
    • 한국식품과학회지
    • /
    • 제39권5호
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Michael addition acceptor 그룹을 가지고 있는 phytochemicals의 toll-like receptor 신호전달체계 조절을 통한 항염증 효과 (Anti-inflammatory Effects of Phytochemicals Having Michael Addition Acceptors by the Modulation of Toll-like Receptor Signaling Pathways)

  • 윤형선
    • 한국식품과학회지
    • /
    • 제41권5호
    • /
    • pp.477-482
    • /
    • 2009
  • TLRs는 여러 병원균들이 가지고 있는 PAMPs를 인식해서, 선천성 면역 반응을 유도하는 중요한 역할을 한다. TLR4의 이합체 형성은 신호전달 체계의 활성화와 뒤이어 발생하는 선천성 면역 반응을 유도하기 위해서 최초로 일어나는 반응으로 알려져 있다. 우리가 먹는 식품 중에는 항염증 효과가 있다고 널리 알려져 있는 phytochemicals이 포함되어 있다. 특히 ${\alpha},{\beta}$-unsaturated carbonyl group을 가지고 있는 curcumin, 6-shogaol, 그리고 cinnamaldehyde는 Michael addition 반응에 의해서 LPS에 의해서 유도된 TLR4의 이합체 형성을 억제시켜, 전사요소 NF-${\kappa}B$와 IRF3 활성화 및 그것들에 의해서 조절되는 타깃 유전자들을 억제시킨다. 이러한 결과는 ${\alpha},{\beta}$-unsaturated carbonyl group을 가지고 있는 curcumin, 6-shogaol, 그리고 cinnamaldehyde의 항염증 효능에 대한 새로운 기전을 설명해 주는 것이라 할 수 있겠다.

Individual LPS Responsiveness Depends on the Variation of Toll-like Receptor (TLR) Expression Level

  • JaeKal, Jun;Abraham, Edward;Azam, Tania;Netea, Mihai G.;Dinarello, Charles A.;Lim, Jong-Seok;Yang, Young;Yoon, Do-Young;Kim, Soo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1862-1867
    • /
    • 2007
  • An individual's immune response is critical for host protection from many different pathogens, and the responsiveness can be assessed by the amount of cytokine production upon stimulating bacterial components such as lipopolysaccharide (LPS). The difference between individuals in their peripheral blood mononuclear cells (PBMC) responsiveness to LPS, a Gram-negative endotoxin, was investigated from 27 healthy individuals. We observed a large variation in $IFN{\gamma}$ production among different individuals. The PBMC of the consistently three highest and three lowest $IFN{\gamma}$ producers were investigated. Since previous studies described that a single point mutation in the coding region of TLR2 and TLR4 is linked to the individual responsiveness to pathogenic bacterial infections, we first examined the known point mutations in the coding region of $TLR2^{Pro681His}$, $TLR4^{Pro714His}$ located in the cytoplasmic regions of the Toll-like domain as well as $TLR4^{Asp299Gly}$ located in the extracellular region. None of these mutations were associated with an individual's responsiveness to LPS, despite the presence of $TLR4^{Asp299Gly}$ mutation. Further investigation revealed that the variation of PBMC responsiveness to LPS among healthy individuals was due to constitutive expression levels of TLR4 and TLR2. This result is consistent with an aging-related low expression of Toll-like receptors in the mouse model of LPS responsiveness. The present study therefore suggests that the constitutive expression levels of TLR2 and TLR4 may contribute to the individual response to LPS.

All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향 (Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells)

  • 김기형;박상준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권6호
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.