Browse > Article

Individual LPS Responsiveness Depends on the Variation of Toll-like Receptor (TLR) Expression Level  

JaeKal, Jun (Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, Konkuk University)
Abraham, Edward (Department of Medicine, University of Alabama at Birmingham)
Azam, Tania (Division of Infectious Diseases, University of Colorado Health Sciences Center)
Netea, Mihai G. (Division of Infectious Diseases, University of Colorado Health Sciences Center)
Dinarello, Charles A. (Division of Infectious Diseases, University of Colorado Health Sciences Center)
Lim, Jong-Seok (Department of Biological Science, Sookmyung Women's University)
Yang, Young (Department of Biological Science, Sookmyung Women's University)
Yoon, Do-Young (Department of Bioscience and Biotechnology, Konkuk University)
Kim, Soo-Hyun (Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1862-1867 More about this Journal
Abstract
An individual's immune response is critical for host protection from many different pathogens, and the responsiveness can be assessed by the amount of cytokine production upon stimulating bacterial components such as lipopolysaccharide (LPS). The difference between individuals in their peripheral blood mononuclear cells (PBMC) responsiveness to LPS, a Gram-negative endotoxin, was investigated from 27 healthy individuals. We observed a large variation in $IFN{\gamma}$ production among different individuals. The PBMC of the consistently three highest and three lowest $IFN{\gamma}$ producers were investigated. Since previous studies described that a single point mutation in the coding region of TLR2 and TLR4 is linked to the individual responsiveness to pathogenic bacterial infections, we first examined the known point mutations in the coding region of $TLR2^{Pro681His}$, $TLR4^{Pro714His}$ located in the cytoplasmic regions of the Toll-like domain as well as $TLR4^{Asp299Gly}$ located in the extracellular region. None of these mutations were associated with an individual's responsiveness to LPS, despite the presence of $TLR4^{Asp299Gly}$ mutation. Further investigation revealed that the variation of PBMC responsiveness to LPS among healthy individuals was due to constitutive expression levels of TLR4 and TLR2. This result is consistent with an aging-related low expression of Toll-like receptors in the mouse model of LPS responsiveness. The present study therefore suggests that the constitutive expression levels of TLR2 and TLR4 may contribute to the individual response to LPS.
Keywords
Cytokine; lipopolysaccharide; Toll-like receptor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Haehnel, V., L. Schwarzfischer, M. J. Fenton, and M. Rehli. 2002. Transcriptional regulation of the human toll-like receptor 2 gene in monocytes and macrophages. J. Immunol. 168: 5629-5637   DOI
2 Heine, H., C. J. Kirschning, E. Lien, B. G. Monks, M. Rothe, and D. T. Golenbock. 1999. Cutting edge: Cells that carry A null allele for toll-like receptor 2 are capable of responding to endotoxin. J. Immunol. 162: 6971-6975
3 Hirschfeld, M., Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis. 2000. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine tolllike receptor 2. J. Immunol. 165: 618-622   DOI
4 Horng, T., G. M. Barton, R. A. Flavell, and R. Medzhitov. 2002. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420: 329-333   DOI   ScienceOn
5 Kim, S. H., T. Azam, D. Y. Yoon, L. L. Reznikov, D. Novick, M. Rubinstein, and C. A. Dinarello. 2001. Sitespecific mutations in the mature form of human IL-18 with enhanced biological activity and decreased neutralization by IL-18 binding protein. Proc. Natl. Acad. Sci. USA 98: 3304-3309
6 Musikacharoen, T., T. Matsuguchi, T. Kikuchi, and Y. Yoshikai. 2001. NF-kappa B and STAT5 play important roles in the regulation of mouse Toll-like receptor 2 gene expression. J. Immunol. 166: 4516-4524   DOI
7 van der Graaf, C., B. J. Kullberg, L. Joosten, T. Verver- Jansen, L. Jacobs, J. W. Van der Meer, and M. G. Netea. 2005. Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine 30: 264-268   DOI   ScienceOn
8 Zhang, F. X., C. J. Kirschning, R. Mancinelli, X. P. Xu, Y. Jin, E. Faure, A. Mantovani, M. Rothe, M. Muzio, and M. Arditi. 1999. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274: 7611-7614   DOI   ScienceOn
9 Ginaldi, L., M. F. Loreto, M. P. Corsi, M. Modesti, and M. De Martinis. 2001. Immunosenescence and infectious diseases. Microbes Infect. 3: 851-857   DOI   ScienceOn
10 Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115-122   DOI   ScienceOn
11 Lee, B. H. and G. E. Ji. 2005. Effect of bifidobacterium cell fractions on IL-6 production in RAW 264.7 macrophage cells. J. Microbiol. Biotechnol. 15: 740-744   과학기술학회마을
12 van Duin, D., S. Mohanty, V. Thomas, S. Ginter, R. R. Montgomery, E. Fikrig, H. G. Allore, R. Medzhitov, and A. C. Shaw. 2007. Age-associated defect in human TLR-1/2 function. J. Immunol. 178: 970-975   DOI
13 Miller, R. A. 1996. The aging immune system: Primer and prospectus. Science 273: 70-74   DOI
14 Hemmi, H., T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo, K. Hoshino, T. Horiuchi, H. Tomizawa, K. Takeda, and S. Akira. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3: 196-200   DOI   ScienceOn
15 Kim, H. Y., J.-R. Kim, and H.-S. Kim. 2006. Synergistic effect of interleukin-18 on the expression of lipopolysaccharideinduced IP-10 (CXCL-10) mRNA in mouse peritoneal macrophages. J. Microbiol. Biotechnol. 16: 1605-1612   과학기술학회마을
16 Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085-2088   DOI   ScienceOn
17 Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2: 675-680   DOI   ScienceOn
18 Son, C. H., H. R. Yoon, I. O. Seong, M.-R. Chang, Y. C. Kim, H.-C. Kang, S.-C. Suh, and Y. S. Kim. 2006. MethA fibrosarcoma cells expressing membrane-bound forms of IL- 2 enhance antitumor immunity. J. Microbiol. Biotechnol. 16: 1919-1927   과학기술학회마을
19 Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738   DOI   ScienceOn
20 Lomaga, M. A., W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, G. Van, S. Kaufman, A. van der Heiden, A. Itie, A. Wakeham, W. Khoo, T. Sasaki, Z. Cao, J. M. Penninger, C. J. Paige, D. L. Lacey, C. R. Dunstan, W. J. Boyle, D. V. Goeddel, and T. W. Mak. 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin- 1, CD40, and LPS signaling. Genes Dev. 13: 1015-1024   DOI   ScienceOn
21 Lee, J., L. Mira-Arbibe, and R. J. Ulevitch. 2000. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J. Leukoc. Biol. 68: 909-915
22 Renshaw, M., J. Rockwell, C. Engleman, A. Gewirtz, J. Katz, and S. Sambhara. 2002. Cutting edge: Impaired Toll-like receptor expression and function in aging. J. Immunol. 169: 4697-4701   DOI
23 Ishida, I., H. Kubo, S. Suzuki, T. Suzuki, S. Akashi, K. Inoue, S. Maeda, H. Kikuchi, H. Sasaki, and T. Kondo. 2002. Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J. Immunol. 169: 2069-2075   DOI
24 Xu, Y., X. Tao, B. Shen, T. Horng, R. Medzhitov, J. L. Manley, and L. Tong. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408: 111-115   DOI   ScienceOn
25 Wang, T., W. P. Lafuse, and B. S. Zwilling. 2001. NFkappaB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. J. Immunol. 167: 6924-6932   DOI
26 Ulevitch, R. J. and P. S. Tobias. 1999. Recognition of Gramnegative bacteria and endotoxin by the innate immune system. Curr. Opin. Immunol. 11: 19-22   DOI   ScienceOn
27 Arbour, N. C., E. Lorenz, B. C. Schutte, J. Zabner, J. N. Kline, M. Jones, K. Frees, J. L. Watt, and D. A. Schwartz. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25: 187-191   DOI   ScienceOn
28 Lee, D. H., B.-J. Park, M.-S. Lee, J.-B. Choi, J.-K. Kim, J.-H. Park, and J.-C. Park. 2006. Synergistic effect of Staphylococcus aureus and LPS on silica-induced tumor necrosis factor production in macrophage cell line J774A.1. J. Microbiol. Biotechnol. 16: 136-140   과학기술학회마을
29 Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397   DOI   ScienceOn
30 Rehli, M., A. Poltorak, L. Schwarzfischer, S. W. Krause, R. Andreesen, and B. Beutler. 2000. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J. Biol. Chem. 275: 9773-9781   DOI   ScienceOn
31 Schumann, R. R., S. R. Leong, G. W. Flaggs, P. W. Gray, S. D. Wright, J. C. Mathison, P. S. Tobias, and R. J. Ulevitch. 1990. Structure and function of lipopolysaccharide binding protein. Science 249: 1429-1431   DOI
32 Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Grampositive bacterial cell wall components. Immunity 11: 443-451   DOI   ScienceOn
33 Wright, S. D., R. A. Ramos, P. S. Tobias, R. J. Ulevitch, and J. C. Mathison. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431-1433   DOI
34 Jurk, M., F. Heil, J. Vollmer, C. Schetter, A. M. Krieg, H. Wagner, G. Lipford, and S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3: 499
35 Yang, R. B., M. R. Mark, A. Gray, A. Huang, M. H. Xie, M. Zhang, A. Goddard, W. I. Wood, A. L. Gurney, and P. J. Godowski. 1998. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395: 284-288   DOI   ScienceOn
36 Fitzgerald K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, and L. A. O'Neill. 2001. Mal (MyD88-adapterlike) is required for Toll-like receptor-4 signal transduction. Nature 413: 78-83   DOI   ScienceOn
37 Kim, H. Y., J. O. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265-268   과학기술학회마을
38 Underhill, D. M., A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, and A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811-815   DOI   ScienceOn