• Title/Summary/Keyword: tolerance of area error

Search Result 49, Processing Time 0.024 seconds

A Novel Online Multi-section Weighed Fault Matching and Detecting Algorithm Based on Wide-area Information

  • Tong, Xiaoyang;Lian, Wenchao;Wang, Hongbin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2118-2126
    • /
    • 2017
  • The large-scale power system blackouts have indicated that conventional protection relays that based on local signals cannot fit for modern power grids with complicated setting or heavily loaded-flow transfer. In order to accurately detect various faulted lines and improve the fault-tolerance of wide-area protection, a novel multi-section weighed fault matching and detecting algorithm is proposed. The real protection vector (RPV) and expected section protection vectors (ESPVs) for five fault sections are constructed respectively. The function of multi-section weighed fault matching is established to calculate the section fault matching degrees between RPV and five ESPVs. Then the fault degree of protected line based on five section fault degrees can be obtained. Two fault detecting criterions are given to support the higher accuracy rate of detecting fault. With the enumerating method, the simulation tests illustrate the correctness and fault-tolerance of proposed algorithm. It can reach the target of 100% accuracy rate under 5 bits error of wide-area protections. The influence factors of fault-tolerance are analyzed, which include the choosing of wide-area protections, as well as the topological structures of power grid and fault threshold.

Relationship between Surface Sag Error and Optical Power of Progressive Addition Lens

  • Liu, Zhiying;Li, Dan
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.538-543
    • /
    • 2017
  • Progressive addition lenses (PAL) have very wide application in the modern glasses market. The unique progressive surface can make a lens have progressive refractive power, which can meet the human eye's different needs for distance-vision and near-vision. According to the national glasses fabrication standard, the difference between actual optical power after fabrication and nominal design value should be less than 0.1D over the lens effective area. The optical power distribution of PAL is determined directly by the surface. Consequently, the surface processing accuracy requirement is proposed. Beginning from the surface expressions of progressive addition lenses, the relationship equations between the surface sag and optical power distribution are derived. They are demonstrated through tolerance analysis and test of an example progressive addition lens with addition of 2.09D (5.46D-7.55D). The example addition surface is fabricated under given accuracy by a single-point diamond ultra-precision machine. The optical power of the PAL example is tested with a focal-meter after fabrication. The optical power addition difference between test result and design nominal value is 0.09D, which is less than 0.1D. The derived relationship between the surface error and optical power is verified from the PAL example simulation and test result. It can provide theoretical tolerance analysis proof for the PAL surface fabricating process.

Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling - (5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 -)

  • So, Bum-Sik;Jung, Yoong-Ho;Yun, Jae-Deuk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

Tolerance Analysis and Compensation Method Using Zernike Polynomial Coefficients of Omni-directional and Fisheye Varifocal Lens

  • Kim, Jin Woo;Ryu, Jae Myung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.720-731
    • /
    • 2014
  • There are many kinds of optical systems to widen a field of view. Fisheye lenses with view angles of 180 degrees and omni-directional systems with the view angles of 360 degrees are recognized as proper systems to widen a field of view. In this study, we proposed a new optical system to overcome drawbacks of conventional omni-directional systems such as a limited field of view in the central area and difficulties in manufacturing. Thus we can eliminate the undesirable reflection components of the omni-directional system and solve the primary drawback of the conventional system. Finally, tolerance analysis using Zernike polynomial coefficients was performed to confirm the productivity of the new optical system. Furthermore, we established a method of optical axis alignment and compensation schemes for the proposed optical system as a result of tolerance analysis. In a sensitivity calculation, we investigated performance degradation due to manufacturing error using Code V(R) macro function. Consequently, we suggested compensation schemes using a lens group decentering. This paper gives a good guidance for the optical design and tolerance analysis including the compensation method in the extremely wide angle system.

A Study on the Problems and Improvements of the Area Error Formula in Cadastral Surveying (지적측량의 면적오차 계산공식에 대한 문제점 및 개선방안 고찰)

  • Yang, Chul-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.5-16
    • /
    • 2022
  • Based on the general formula for the area error of a polygon and rectangular parcel, the constant term 0.0262 × M (scale denominator) of the area error calculation formula prescribed by the Enforcement Decree was analyzed. As a result, it is found that the formula appropriately reflects the characteristics of the graphical surveying as a typical rectangular parcel model, but quantitatively allows a relatively large area error. In addition, it is found that, even if the area is the same, 50% more area error than a square parcel could be calculated depending on the shape of the parcel, and that the allowable area error should be different when dividing a parcel. Based on the analysis, furthermore, this study shows a solution that can solve the problems at once from the point of cadastral surveying. These are, the problem of reflecting the accuracy of the surveying, the problem of reflecting the size and shape of the parcel, and the problem whether a single area error formula can be used without having to distinguish between graphical and numerical surveyings. The new formula that solves these problems will bring about improvements in many related factors and promote the development of digital cadastral system.

Study in the Applicability of KLIS Data for the Cadastral Re-Surveying in the Forest Area (임야지역 지적재조사를 위한 KLIS 데이터의 활용 가능성 연구)

  • Choi, Han-Young;Hong, Sung-Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.23-30
    • /
    • 2006
  • The case of a forest area has tome limitations of adopting a ground surveying like as TS (Total Station) and RTK-GPS (Real Time Kinematic-GPS) due to the specificity of the forest area. Therefore, the new method, is different from exist the cadastral re-surveying method in a metro area and a cropland, is applicably considered in the forest area. In this paper, we suggest the applicability of the digital cadastral map of forest which is used at KLIS. According to the result of study, the most important area error value for adopted in the cadastral re-surveying is almost contained the error tolerance. Therefore, KLIS data, if it is related with the actual reference data for adjusting the location boundary, is suitable to be adopted in the cadastral re-surveying.

  • PDF

Realtime Monitoring System using AJAX + XML (AJAX+XML 기반의 모니터링 시스템)

  • Choi, Yun Jeong;Park, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2009
  • Nowadays, according to rapid development of computing environments, information processing and analysis system are very interesting research area. As a viewpoint of data preparation-processing-analysis in knowledge technology, the goal of automated information system is to satisfy high reliability and confidence and to minimize of human-administrator intervention. In addition, we expect the system which can deal with problem and abnormal error effectively as a fault detection and fault tolerance. In this paper, we design a monitoring system as follows. A productive monitoring information from various systems has unstructured forms and characteristics and crawls informative data by conditions and gathering rules. For representing of monitering information which requested by administrator, running-status can be able to check dynamically and systematic like connection/closed status in real-time. Our proposed system can easily correct and processing for monitoring information from various type of server and support to make objective judgement and analysis of administrator under operative target of information system. We implement semi-realtime monitering system using AJAX technology for dynamic browsing of web information and information processing using XML and XPATH. We apply our system to SMS server for checking running status and the system shows that has high utility and reliability.

A Study on Purchasing Model of Internet Shopping Mall (인터넷 쇼핑몰의 구매모델에 관한 연구)

  • Lee Sung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.199-204
    • /
    • 2005
  • Despite the growth of research interest into electronic commerce, there is still little information available on the ways in which an electronic commerce can be successfully developed. This study reports a set of success factors for electronic commerce, specifically some important implications for managers of internet shopping mall area in Korea. In this study it is found that trust on shopping mall and delivery are very important to increase purchase intention of customer. In addition, the result of this study shows that price and ease of use and loading time and error tolerance are very important to increase purchase intention.

  • PDF

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Acceptable Velocity Errors Tolerance For Field Artillery Weapon System (야전포병 무기체계의 속도오차 허용한계)

  • Min Kye-Ryo;Bai Do-Sun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.163-176
    • /
    • 1976
  • The artillery fire is characterized by great damage that can be inflicted simultaneously to an area through concentrated firing. The field artillery guns used in R.O.K. Army are generally old. Thus high values of their velocity errors cause wide dispersion of shell landings. Therefore effects of the concentrated firing is lessened. In this paper a general model which considers all error factors involved in firing in general, is established first. Then from this a basic model which includes the errors involved in concentrated firing only, such as the ballistic error, velocity error, target density function, and damage function, is extracted. Among many weapon systems now in use a specific one called gun 'A' is selected and its concentration effects are measured through computer simulation. The results show that as the velocity error of a battery increases, its target coverage capability, i. e. concentration effect, decreases. Therefore the need arises for the field artillery commander to know beforehand characteristics, i.e. velocity errors, of the guns in his unit and also to carefully examine the problem of battery arrangement with the gun characteristics in mind in order to maximize the damage effects of his artillery unit.

  • PDF