• Title/Summary/Keyword: tolerance analysis

Search Result 1,376, Processing Time 0.026 seconds

Enhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain

  • Jiang, Yunyun;Ren, Fazheng;Liu, Songling;Zhao, Liang;Guo, Huiyuan;Hou, Caiyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.452-460
    • /
    • 2016
  • Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual lines, which were adaptive to the acid stress for 10th, 20th, 30th, 40th, and 50th repeats, respectively. The variant strain showed a significant increase in acid tolerance under conditions of pH 2.5 for 2 h (from 7.92 to 4.44 log CFU/ml) compared with the wild-type strain (WT, from 7.87 to 0 log CFU/ml). The surface of the variant strain was also smoother. Comparative whole-genome analysis showed that the galactosyl transferase D gene (cpsD, bbmn68_1012), a key gene involved in exopolysaccharide (EPS) synthesis, was altered by two nucleotides in the mutant, causing alteration in amino acids, pI (from 8.94 to 9.19), and predicted protein structure. Meanwhile, cpsD expression and EPS production were also reduced in the variant strain (p < 0.05) compared with WT, and the exogenous WT-EPS in the variant strain reduced its acid-resistant ability. These results suggested EPS was related to acid responses of BBMN68.

Esophageal tolerance to high-dose stereotactic radiosurgery

  • Lee, Bo Mi;Chang, Sei Kyung;Ko, Seung Young;Yoo, Seung Hoon;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.234-238
    • /
    • 2013
  • Purpose: Esophageal tolerance is needed to guide the safe administration of stereotactic radiosurgery (SRS). We evaluated comprehensive dose-volume parameters of acute esophageal toxicity in patients with spinal metastasis treated with SRS. Materials and Methods: From May 2008 to May 2011, 30 cases in 27 patients with spinal metastasis received single fraction SRS to targets neighboring esophagus. Endpoints evaluated include length (mm), volume (mL), maximal dose (Gy), and series of dose-volume thresholds from the dose-volume histogram (volume of the organ treated beyond a threshold dose). Results: The median time from the start of irradiation to development of esophageal toxicity was 2 weeks (range, 1 to 12 weeks). Six events of grade 1 esophageal toxicity occurred. No grade 2 or higher events were observed. $V_{15}$ of external surface of esophagus was found to predict acute esophageal toxicity revealed by multivariate analysis (odds radio = 1.272, p = 0.047). Conclusion: In patients with spinal metastasis who received SRS for palliation of symptoms, the threshold dose-volume parameter associated with acute esophageal toxicity was found to be $V_{15}$ of external surface of esophagus. Restrict $V_{15}$ to external surface of esophagus as low as possible might be safe and feasible in radiosurgery.

Optimal Management of Fabrication and Assembly Tolerance of Optical Systems by Analyzing Its Influence on Zernike Coefficients (쩨르니케 계수의 민감도에 바탕을 둔 광부품 제작 및 조립 공차의 최적 관리)

  • Kim, Hyunsook;Kim, Jin Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • A new method is proposed for optimal management of the fabrication and assembly tolerance of optical systems. The practical utility of the method is shown by applying it to a wide-angle anamorphic IR optical system. In this method the wavefront error of an optical system is expressed in terms of Zernike polynomials, and the sensitivity of the expansion coefficients to the variation of design parameters is analyzed. Based on this sensitivity analysis, the optimal tolerances of the fabrication parameters are determined and the best compensators for the assembly process are selected. By using this method, one can accurately predict with good confidence the best possible performance of a completed optical system in practice.

Identification of genes related to ER stress in bZIP28 gene transgenic potato plant

  • Kim, Dool Yi;Kim, Kyung Hwa;Choi, Man Soo;Ok, Hyun Choog;Kim, Jae Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.153-153
    • /
    • 2017
  • Potato (Solanum tubersosum L.) is susceptible to various environmental stresses such as frost, high temperature, and drought. Enhancement of potato drought tolerance can reduce yield loss under drought that has negative effect on potato tuber growth. Genetic engineering can be utilized to achieve this goal, but such approaches using endogenous potato genes have rarely been applied. Since unpredictable global weather changes cause more severe and frequent water limiting conditions, improvement of potato drought tolerance can minimize such adverse effects under drought and can impact on sustainable potato production. Genetic engineering can be utilized to improve potato drought tolerance, but such approaches using endogenous potato genes have rarely been applied. We were obtained AtbZIP28 gene transgenic potato plants. It is identified transcript levels at various stress conditions, polyethylene glycol (PEG), NaCl, abscisic ${\underline{acid}}$ (ABA). Also, For identification to regulate ER stress response genes in AtbZIP28 gene transgenic potato plant, we screened seven potato genes from RNA-seq analysis under TM treatment. Five and two genes were up- and down-regulated by TM, respectively. Their expression patterns were re-examined at stress agents known to elicit TM, DTT, DMSO and salt stress.

  • PDF

Resistance of Cucumber Grafting Rootstock Pumpkin Cultivars to Chilling and Salinity Stresses

  • Xu, Yang;Guo, Shi-rong;Li, He;Sun, Hong-zhu;Lu, Na;Shu, Sheng;Sun, Jin
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.220-231
    • /
    • 2017
  • Grafting using a pumpkin (Cucurbita sp.) rootstock is an effective way to improve cucumber (Cucumis sativus) resistance to a combination of chilling and salinity stresses. We evaluated the tolerance of 15 pumpkin cultivars to chilling, salinity, and combined stresses at the germination and seedling stages. Selected plant characteristics, including germination rate, germination potential, germination index, plant height, stem thickness, fresh weight, and dry weight, were analyzed. We used the unweighted pair group method with arithmetic mean for cluster analyses to determine the stress tolerance levels of the pumpkin cultivars. The 15 cultivars were divided into three clusters: tolerant, moderately tolerant, and susceptible to stress treatments. The stress tolerances of all cultivars were variable in the germination and seedling stages, and most cultivars were not tolerant to individual treatments of chilling or salinity stresses at both stages. These results suggest that identifying suitable cultivars for use as rootstock during cucumber grafting should involve the evaluation of stress tolerance during different growth stages. Additionally, cultivars tolerant to chilling stress may not be tolerant to salinity stress; therefore, the choice of pumpkin rootstock should depend on where the grafted plant will be grown. Cultivars tolerant to a combination of chilling and salinity stresses may be useful as rootstock for cucumber grafting. Our findings may serve as reference material for choosing appropriate pumpkin rootstocks for cucumber grafting.

Surface Modification of Reverse Osmosis Membrane Skin Layer by Silane Compound (Silane 화합물을 이용한 역삼투막 활성층의 표면개질)

  • Lee Yong-Taek;Shin Dong-Ho;Kim No-Won
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.106-114
    • /
    • 2006
  • This study is concerned with preparation of chlorine resistant (CR) thin layer composite (TFC) membranes. The novel method for making CR membranes from commercially available RO membranes is based on sol-gel condensation of trialkoxyalkylsilane derivatives. The silane coupling agents used in this study have different number of alkyl carbon chain group (methyltriethoxysilane; METES and octyltriethoxysilane; OCTES). The OCTES composite membranes have a significant tolerance to chlorine compared to commercial polyamide RO membrane or METES composite membranes. The surface properties of membranes were examined to explain a significant difference of chlorine tolerance between OCTES composite membrane and the other two membranes. In this study, we tried several surface analyses to explain difference of chlorine tolerance. The element composition results of surface analysis by EDX confirmed that both silane fixed on polyamide firmly, The surface roughness and contact angle results showed long chain alkyl group of OCTES enhancing hydrophobicity considerably than METES. The hydrophobicity plays an important role in chlorine resistance of membrane.

The Effect of Seasonal Clothing Weight on Resting Metabolic Rate (계절별 착의량이 안정시 에너지 대사량에 미치는 영향)

  • 황수정;최정화;성화경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.3
    • /
    • pp.483-494
    • /
    • 1999
  • This study investigated the relation between seasonal variation of clothing weight and its resting metabolic rate to determine the relation between proper living temperature and cold/heat tolerance. Thirty six subjects(18 males and females twenties) were composed to obtain the clothing weight(Total clothing weight) and resting metabolic rate for a year and grouped four seasons : spring (Mar-May) Summer(Jun-Aug) Fall(Sep-Nov) and Winter(Dec-Feb). The data of males and females were respectively divided into three groups by cluster analysis with clothing weight. 1. The resting metabolic rate of male(41.1kcal/m2/hr) was higher than that of female(33.2kcal/m2/hr). It is suggested there is gender difference in the resting metabolic rate(p<.001) 2. The resting metabolic rate of male and female was the highest in Winter. It is suggested there is seasonal variation in the resting metabolic rate(p<.001) 3. It was found that there was relation between clothing weight and resting metabolic rate. The difference of resting metabolic rate between Summer and Winter which is profitable to adaptation to living temperature was significant in light clothing weight in male as well as in female. 4. In comfortable sensation most subjects responded that he/she felt 'comfortable' except Winter. However the heavy clothing weight group felt 'a little uncomfortable' throughout all seasons. l In thermal sensation most subjects responded that he/she felt 'neutral' And then the heavy clothing weight group responded warmer in summer and cooler in winter than light clothing weight group. From the results it was confirmed that male and female showed seasonal variations in clothing weight and resting metabolic rate. Also the resting metabolic rate of male and female was influenced by the clothing weight. In short seasonal variation of resting metabolic rate was larger in light clothing weight group than in heavy clothing weight group. Therefore light clothing weight group is advantgeous in living temperature to improve cold/heat tolerance and it also shows that living with the light clothing weight may enhance the degree of adaptation to change of living environment

  • PDF

Proline Accumulation and P5CS ($\Delta^1$-pyrroline-5-carboxylate synthetase) Gene Expression in Response to Salt Stress in Zoysiagrasses

  • Lee, Dong-Joon;Hwang, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • Proline is known as an osmotrotectant to enhance tolerance against both salt and dehydration stresses. A P5CS ($\Delta^1$-pyrroline-5-carboxylate synthetase) plays a major role in regulation of synthesis of proline. An overexpression of the mothbean P5CS gene in transgenic tobacco plant increased the levels of proline and osmotolerance. In an attempt to look for the possibility to use content of proline as well as a level of P5CS gene expression as molecular markers for salt tolerance, the amounts of proline and transcript levels of P5CS were measured as functions of either concentration of NaCl or length of treatment period among different species of zoysiagrass. Hybridzoysia showed the highest level of proline ($329\mu\textrm{g}$/g.f.w.) among five different species of zoysiagrass at 250 mM NaCl in 24 hours. The level of P5CS transcript was also the highest in the hybridzoysia at 250 mM NaCl in 24 hours. The transcriptions of P5CS gene were induced at the rates of 1.2, 1.2, 1.8, and 1.8, upon treatment of 250 mM NaCl in Z. japonica, Z. matrella, Z. sinica and hybridzoysia respectively. Based on a correlation between the level of P5CS transcript and the proline content among different species of zoysiagrass, a comparative structural analysis of the gene for P5CS from either Z. sinica or hybridzoysia may lead to an understanding of mechanism for salt tolerance shown differently among zoysiagrasses.

Construction of a Network Model to Reveal Genes Related to Salt Tolerance in Chinese Cabbage (배추 염 저항성 관련 유전자의 네트워크 모델 구축)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Ji-Hyun;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.684-693
    • /
    • 2014
  • Abiotic stress conditions such as cold, drought, and salinity trigger physiological and morphological changes and yield loss in plants. Hence, plants adapt to adverse environments by developing tolerance through complex regulation of genes related to various metabolic processes. This study was conducted to construct a coexpression network for multidirectional analysis of salt-stress response genes in Brassica rapa (Chinese cabbage). To construct the coexpression network, we collected KBGP-24K microarray data from the B. rapa EST and microarray database (BrEMD) and performed time-based expression analyses of B. rapa plants. The constructed coexpression network model showed 1,853 nodes, 5,740 edges, and 142 connected components (correlation coefficient > 0.85). On the basis of the significantly expressed genes in the network, we concluded that the development of salt tolerance is closely related to the activation of $Na^+$ transport by reactive oxygen species signaling and the accumulation of proline in Chinese cabbage.

A Study on the Utilization of Coal Ash as Construction Materials ln Forcus on the Environmental Analysis (석탄재의 건설재료로서의 활용에 관한 연구-환경적 특성 검토를 중심으로)

  • 천병식;고용일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 1995
  • Although lots of experimental studies of coal ash have been performed to study the utilization as construction materials, the environmental characteristics of coal ash are still qestionable. In this study, fly ash is examined to be classified according to Korean Environmental Standard and analized whether the batch test results are within the toler trance limit when utilized or treated as reclamation and earth work materials. The batch tests was performed to examine pH and contaminant contents. Consequently, fly ash is classified as non hazardous industrial waste. The pH value shows a strong alkalinity than the tolerance limit, but it is implied that fly ash can be used to neutralize the acid ground. All other items except pH satisfy the tolerance limit, In addition, a small quantity of additives(cement) which used to improve the poor geotechnical properties of coal ash, could decrease the pH value into the tolerance limit as well as improve strengtIL durability and permeability. It is concluded that when coal ash is used properly, there is no enviormental harmfulness as construction materials.

  • PDF