Browse > Article

Surface Modification of Reverse Osmosis Membrane Skin Layer by Silane Compound  

Lee Yong-Taek (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University)
Shin Dong-Ho (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University)
Kim No-Won (Department of Environmental Engineering Engineering College, Dongeui University)
Publication Information
Membrane Journal / v.16, no.2, 2006 , pp. 106-114 More about this Journal
Abstract
This study is concerned with preparation of chlorine resistant (CR) thin layer composite (TFC) membranes. The novel method for making CR membranes from commercially available RO membranes is based on sol-gel condensation of trialkoxyalkylsilane derivatives. The silane coupling agents used in this study have different number of alkyl carbon chain group (methyltriethoxysilane; METES and octyltriethoxysilane; OCTES). The OCTES composite membranes have a significant tolerance to chlorine compared to commercial polyamide RO membrane or METES composite membranes. The surface properties of membranes were examined to explain a significant difference of chlorine tolerance between OCTES composite membrane and the other two membranes. In this study, we tried several surface analyses to explain difference of chlorine tolerance. The element composition results of surface analysis by EDX confirmed that both silane fixed on polyamide firmly, The surface roughness and contact angle results showed long chain alkyl group of OCTES enhancing hydrophobicity considerably than METES. The hydrophobicity plays an important role in chlorine resistance of membrane.
Keywords
revers osmosis membrane; silane coupling agent; surface modification; chlorine resistance; surface roughness; hydrophobicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Singh and Rajindar, 'Polyamide polymer solution behavior nder chlorination conditions', J. Mem. Sci., 88, 285 (1994)   DOI   ScienceOn
2 J. Glater, S. K. Hong, and M. Elimelech, 'The search for a chlorine-resistant reverse osmosis membrane', Desalination, 95, 325 (1994)   DOI   ScienceOn
3 R. Singh, 'Characteristics of a chlorine-resistant reverse osmosis membrane', Desalination, 95, 27-37 (1994)   DOI   ScienceOn
4 V. Freger., J. Gilron, and S. Belfer. 'TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study', J. Mem. Sci., 209, 283 (2002)   DOI   ScienceOn
5 W. S. Winston Ho and K. K. Sirkar, 'Membrane Handbook', Chapman and Hall Pub., USA (1992)
6 J. E. Cadotte, 'Reverse osmosis membrane', U. S. Patent, 4,259,183 (1981)
7 W. S. Yun, 'Scanning Probe Microscopy and Polymer', Polymer Sci. Tech., 15(3), 363 (2004)
8 Y. G. Kim, N. W. Kim, and Y. T. Lee, 'Interpretation of Permeation Characteristics and Membrane Transport Models Through Polyamide Reverse Osmosis Membrane', Mem. J., 14(1), 75, (2004)
9 Y. T. Lee and N. W. Kim, 'Reverse Osmosis Membrane with High Salt Rejection for Seawater Desalination.' J. Korean Ind. Eng. Chem., 15(4), 466 (2004)
10 M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, 'Development of crosslinked aromatic polyamide composite reverse osmosis membrane', J. Chem. Soc. Jpn., 2, 97 (1994)
11 Y. G. Kim, N. W. Kim, and Y. T. Lee, 'A study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification', Mem. J., 15(4), 320 (2005)
12 K. J. Ihn, 'Study of Polymeric Materials Using AFM', Polymer Sci. Tech., 7(3), 332 (1996)
13 R. Singh, 'Characteristics of a chlorine-resistant reverse osmosis membrane', Desalination, 95, 27 (1994)   DOI   ScienceOn
14 S. H. Jang, 'Organic-Inorganic Hybrid Materials : Sol-Gel Derived Coatings', Polymer Sci. Tech., 12(5), (2001)
15 Julius Glater, Seung-Kwan Hong, and Menachem Elimelech, 'The search for a chlorine-resistant reverse osmosis membrane', Desalination, 95, 325 (1994)   DOI   ScienceOn
16 S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, and O. Kedem, 'Surface modification of commercial composite polyamide reverse osmosis membranes', J. Mem. Sci., 139, 175 (1998)   DOI   ScienceOn
17 M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, 'Development of crosslinked aromatic polyamide composite reverse osmosis membrane', J. Chem. Soc. Jpn. 2, 97 (1994)
18 Wiesendanger, R., Guntherodt, H.-J, Springer, Wiesendanger, R., Guntherodt, H.-J, and Baumeister, W. 'Scanning Tunneling Microscopy II', Springer-Berlag, Berlin (1993)