• Title/Summary/Keyword: tnaB

Search Result 5, Processing Time 0.018 seconds

Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters

  • Hyun Jin Kim;Sion Ham;Nara-Shin;Jeong Hyeon Hwang;Suk Jin Oh;Tae-Rim Choi;Jeong Chan Joo;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.969-977
    • /
    • 2024
  • Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.

Cloning, Purification, and Characterization of a New DNA Polymerase from a Hyperthermophilic Archaeon, Thermococcus sp. NA1

  • Kim, Yun-Jae;Lee, Hyun-Sook;Bae, Seung-Seob;Jeon, Jeong-Ho;Lim, Jae-Kyu;Cho, Yon-A;Nam, Ki-Hoon;Kang, Sung-Gyun;Kim, Sang-Jin;Kwon, Suk-Tae;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1090-1097
    • /
    • 2007
  • Genomic analysis of Thermococcus sp. NA1 revealed the presence of a 3,927-base-pair (bp) family B-type DNA polymerase gene, TNA1_pol. TNA1_pol, without its intein, was overexpressed in Escherichia coli, purified using metal affinity chromatography, and characterized. TNA1_pol activity was optimal at pH 7.5 and $75^{\circ}C$. TNA1_pol was highly thermostable, with a half-life of 3.5h at $100^{\circ}C$ and 12.5h at $95^{\circ}C$. Polymerase chain reaction parameters of TNA1_pol such as error-rate, processivity, and extension rate were measured in comparison with rTaq, Pfu, and KOD DNA polymerases. TNA1_pol averaged one incorrect bp every 4.45 kilobases (kb), and had a processivity of 150 nucleotides (nt) and an extension rate of 60 bases/s. Thus, TNA1_pol has a much faster elongation rate than Pfu DNA polymerase with 7-fold higher fidelity than that of rTaq.

Sensing Domain and Extension Rate of a Family B-Type DNA Polymerase Determine the Stalling at a Deaminated Base

  • Kim, Yun-Jae;Cha, Sun-Shin;Lee, Hyun-Sook;Ryu, Yong-Gu;Bae, Seung-Seob;Cho, Yo-Na;Cho, Hyun-Soo;Kim, Sang-Jin;Kwon, Suk-Tae;Lee, Jung-Hyun;Kang, Sung-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1377-1385
    • /
    • 2008
  • The uracil-sensing domain in archaeal family B-type DNA polymerases recognizes pro-mutagenic uracils in the DNA template, leading to stalling of DNA polymerases. Here, we describe our new findings regarding the molecular, mechanism underpinning the stalling of polymerases. We observed that two successive deaminated bases were required to stall TNA1 and KOD1 DNA polymerases, whereas a single deaminated base was enough for stalling Pfu DNA polymerase, in spite of the virtually identical uracil-sensing domains. TNA1 and KOD1 DNA polymerases have a much higher extension rate than Pfu DNA polymerase; decreasing the extension rate resulted in stalling by TNA1 and KOD1 DNA polymerases at a single deaminated base. These results strongly suggest that these polymerases require two factors to stop DNA polymerization at a single deaminated base: the presence of the uracil-sensing domain and a relatively slow extension rate.

Taxonomic Characterization, Evaluation of Toxigenicity, and Saccharification Capability of Aspergillus Section Flavi Isolates from Korean Traditional Wheat-Based Fermentation Starter Nuruk

  • Bal, Jyotiranjan;Yun, Suk-Hyun;Chun, Jeesun;Kim, Beom-Tae;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.155-161
    • /
    • 2016
  • The most economically important species used in a wide range of fermentation industries throughout Asia belong to Aspergillus section Flavi, which are morphologically and phylogenetically indistinguishable, with a few being toxigenic and therefore a major concern. They are frequently isolated from Korean fermentation starters, such as nuruk and meju. The growing popularity of traditional Korean alcoholic beverages has led to a demand for their quality enhancement, therefore requiring selection of efficient non-toxigenic strains to assist effective fermentation. This study was performed to classify the most efficient strains of Aspergillus section Flavi isolated from various types of traditional wheat nuruk, based on a polyphasic approach involving molecular and biochemical evaluation. A total of 69 strains were isolated based on colony morphology and identified as Aspergillus oryzae/flavus based on internal transcribed spacer and calmodulin gene sequencing. Interestingly, none were toxigenic based on PCR amplification of intergenic regions of the aflatoxin cluster genes norB-cypA and the absence of aflatoxin in the culture supernatants by thin-layer chromatography analysis. Saccharification capability of the isolates, assessed through ${\alpha}-amylase$ and glucoamylase activities, revealed that two isolates, TNA24 and TNA15, showed the highest levels of activity. Although the degrees of variation in ${\alpha}-amylase$ and glucoamylase activities among the isolates were higher, there were only slight differences in acid protease activity among the isolates with two, TNA28 and TNA36, showing the highest activities. Furthermore, statistical analyses showed that ${\alpha}-amylase$ activity was positively correlated with glucoamylase activity (p < 0.001), and therefore screening for either was sufficient to predict the saccharifying capacity of the Aspergillus strain.

A Study on the Parallel & Distributed Routing to support PCS Mobility in ATM/B-ISDN (ATM/B-ISDN통신망에서의 PCS Mobility 지원을 위한 병렬.분산 라우팅 기법연구)

  • Shin, Sang-Heon;Koo, Soo-Yong;Kim, Young-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.246-247
    • /
    • 1998
  • PCS를 포함한 차세대 이동통신은 ATM/B-ISDN을 core network으로 하여 다양한 서비스를 제공하는 방향으로 발전할 것으로 예상된다. 이러한 유.무선 통합환경에서 PCS mobility를 효율적으로 제공하기 위해서 TINA와 같은 계층적 연결관리 구조와 이 구조에 적합한 라우팅 기법이 필요하다. 본 논문에서는 ATM/B-ISDNTINA통신망에서 기존의 라우팅 기법에 비해 장점을 가지면서, TINA의 계층적 연결관리 구조를 기바능로 하는 병렬.분산 라우팅 기법을 제안한다. 제안된 병렬.분산 라우팅 기법은 라우팅 알고리즘이 서브네트워트 단위로 병렬적, 계층적으로 실행되어 사용자가 원하는 QoS연결을 제한된 시간내에 빠르게 설정할 수 있으므로, PCS mobility지원을 위한 빈번한 경로 재설정 요구에 유연하게 대처 할수 있다. 또한, 연결관리 체계가 계층적으로 이루어져 있어 TMN/TNA를 통한 체계적인 통신망 관리에도 효율적이다.

  • PDF