Browse > Article

Sensing Domain and Extension Rate of a Family B-Type DNA Polymerase Determine the Stalling at a Deaminated Base  

Kim, Yun-Jae (Korea Ocean Research and Development Institute)
Cha, Sun-Shin (Korea Ocean Research and Development Institute)
Lee, Hyun-Sook (Korea Ocean Research and Development Institute)
Ryu, Yong-Gu (Korea Ocean Research and Development Institute)
Bae, Seung-Seob (Korea Ocean Research and Development Institute)
Cho, Yo-Na (Korea Ocean Research and Development Institute)
Cho, Hyun-Soo (Department of Biology, College of Science, Yonsei University)
Kim, Sang-Jin (Korea Ocean Research and Development Institute)
Kwon, Suk-Tae (Department of Genetic Engineering, Sungkyunkwan University)
Lee, Jung-Hyun (Korea Ocean Research and Development Institute)
Kang, Sung-Gyun (Korea Ocean Research and Development Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.8, 2008 , pp. 1377-1385 More about this Journal
Abstract
The uracil-sensing domain in archaeal family B-type DNA polymerases recognizes pro-mutagenic uracils in the DNA template, leading to stalling of DNA polymerases. Here, we describe our new findings regarding the molecular, mechanism underpinning the stalling of polymerases. We observed that two successive deaminated bases were required to stall TNA1 and KOD1 DNA polymerases, whereas a single deaminated base was enough for stalling Pfu DNA polymerase, in spite of the virtually identical uracil-sensing domains. TNA1 and KOD1 DNA polymerases have a much higher extension rate than Pfu DNA polymerase; decreasing the extension rate resulted in stalling by TNA1 and KOD1 DNA polymerases at a single deaminated base. These results strongly suggest that these polymerases require two factors to stop DNA polymerization at a single deaminated base: the presence of the uracil-sensing domain and a relatively slow extension rate.
Keywords
Archaeal family B-type DNA polymerase; uracil sensing; TNA1 DNA polymerase; extension rate; hypoxanthine;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Karran, P. and T. Lindahl. 1980. Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19: 6005-6011   DOI   ScienceOn
2 Sartori, A. A., P. Schar, S. Fitz-Gibbon, J. E. Miller, and J. Jiriciny. 2001. Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem. 276: 29979-29986   DOI   ScienceOn
3 Cho, Y., H. S. Lee, Y. J. Kim, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2007. Characterization of a dUTPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in polymerase chain reaction amplification. Mar. Biotechnol. 9: 450-458   DOI   ScienceOn
4 Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA Repair and Mutagenesis. American Society of Microbiology Press. Washington, DC
5 Chung, J. H., J. H. Back, Y. I. Park, and Y. S. Han. 2001. Biochemical characterization of a novel hypoxanthine/xanthine dNTP pyrophosphatase from Methanococcus jannaschii. Nucleic Acids Res. 29: 3099-3107   DOI   ScienceOn
6 Kow, Y. W. 2002. Repair of deaminated bases in DNA. Free Radic. Biol. Med. 33: 886-893   DOI   ScienceOn
7 Greagg, M. A., M. J. Fogg, G. Panayootu, S. J. Evans, B. A. Connolly, and L. H. Pearl. 1999. A read-ahead function in archaeal DNA polymerases detects pro-mutagenic templatestrand uracil. Proc. Natl. Acad. Sci. USA 96: 9045-9050
8 Grogan, D. W. 1998. Hyperthermophiles and the problems of DNA instability. Mol. Microbiol. 28: 1043-1049   DOI   ScienceOn
9 Hogrefe, H. H., C. J. Hansen, B. R. Scott, and K. B. Nelson. 2001. Archaeal dUTPase enhances PCR amplifications with archaeal DNA polymerases by preventing dUTP incorporation. Proc. Natl. Acad. Sci. USA 99: 596-601
10 Yang, H., S. Fitz-Gibbon, E. M. Marcotte, J. H. Tai, E. C. Hyman, and J. H. Miller. 1999. Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 182: 1272-1279   DOI   ScienceOn
11 Shuttleworth, G., M. J. Fogg, M. R. Kurpiewski, L. Jen-Jacobson, and B. A. Connolly. 2004. Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J. Mol. Biol. 337: 621-634   DOI   ScienceOn
12 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
13 Lindahl, T. and B. Nyberg. 1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13: 3405-3410   DOI   ScienceOn
14 Lim, J. K., H. S. Lee, Y. J. Lim, S. S. Bae, J. H. Jeon, S. G. Kang, and J.-H. Lee. 2007. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242-1248   과학기술학회마을
15 Shapiro, R. and S. H. Pohl. 1968. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry 7: 448-455   DOI   ScienceOn
16 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
17 Gruz, P., M. Shimizu, F. M. Pisani, M. De Felice, Y. Kanke, and T. Nohmi. 2003. Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus. Nucleic Acids Res. 31: 4024-4030   DOI   ScienceOn
18 Hill-Perkins, M., M. D. Jones, and P. Karran. 1986. Site-specific mutagenesis in vivo by single methylated or deamintaed purine bases. Mutat. Res. 162: 153-163   DOI   ScienceOn
19 Fogg, M. J., L. H. Pearl, and B. A. Connolly. 2002. Structural basis for uracil recognition by archaeal family B DNA polymerases. Nature Struct. Biol. 9: 922-927   DOI   ScienceOn
20 Motz, M., I. Kober, C. Girardot, E. Loeser, U. Bauer, M. Albers, et al. 2002. Elucidation of an archaeal replication protein network to generate enhanced PCR enzymes. J. Biol. Chem. 277: 16179-16188   DOI   ScienceOn
21 Lindahl, T. 1979. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 22: 135-192   DOI
22 Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709-715   DOI   ScienceOn
23 Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826-1831   과학기술학회마을
24 Cann, I. K. and Y. Ishino. 1999. Archaeal DNA replication: Identifying the pieces to solve a puzzle. Genetics 152: 1249-1267
25 Kelman, Z. and J. A. Hurwitz. 2000. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum H*. J. Biol. Chem. 275: 7327-7336   DOI   ScienceOn
26 Gill, S., R. O'Neill, R. J. Lewis, and B. A. Connolly. 2007. Interaction of the family-B DNA polymerase from the archaeon Pyrococcus furiosus with deaminated bases. J. Mol. Biol. 372:855-863   DOI   ScienceOn
27 Sandigursky, M. and W. A. Franklin. 2000 Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J. Biol. Chem. 275: 19146-19149   DOI   ScienceOn
28 Kim, Y. J., H. S. Lee, S. S. Bae, J. H. Jeon, J. K. Lim, Y. Cho, et al. 2007. Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J. Microbiol. Biotechnol. 17: 1090-1097   과학기술학회마을
29 Takagi, M., M. Nishioka, H. Kakihara, M. Kitabayashi, H. Inoue, B. Kawakami, M. Oka, and T. Imanaka. 1997. Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl. Environ. Microbiol. 63: 4504-4510