• Title/Summary/Keyword: titanium surface

Search Result 1,169, Processing Time 0.027 seconds

EFFECT OF CHEMICAL TREATMENT ON THE BIOACTIVITY OF TITANIUM (화학적 처리가 티타늄의 생체활성도에 미치는 영향)

  • Min Kwan-Sik;Lee Min-Ho;Ahn Seung-Geun;Park Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.562-572
    • /
    • 2005
  • Statement of problem : Titanium is widely used as an implant material lot artificial teeth. Also, studies on surface treatment to form a fine passive film on the surface of commercial titanium or its alloys and improving bioactivity with bone have been carried out. However, there is insufficient data about the biocompatibility of the implant materials in the body. Purpose: The purpose of this study was to examine whether the precipitation of apatite on titanium metal is affected by surface modification. Materials and methods: Specimens chemically washed for 2 minute in a 1:1:1.5 (in vol%) mixture of 48% HF 60% $HNO_3$ and distilled water. Specimens were then chemically treated with a solution containing 97% $H_2SO_4$ and 30% $H_2O_2$ at $40^{\circ}C$S for 1 hour, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface were examined with TF-XRD, SEM, EDX and XPS. Also, commercial purity Ti specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. Conventional aluminium and stainless steel 316L were also implanted for comparison. Results and conclusions : The results obtained were summarized as follows. 1. An amorphous titania gel layer was formed on the titanium surface after the titanium specimen was treated with a $H_2SO_4$ and $H_2O_2$ solution. The average roughness was $2.175{\mu}m$ after chemical surface treatment. 2. The amorphous titania was subsequently transformed into anatase by heat treatment at $400^{\circ}C$ for 1 hour. 3. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $46.98{\mu}m$ in chemically-treated Ti, and 52.20, 168.65 and $100.95{\mu}m$ respectively in commercial pure Ti, aluminum and stainless steel 316L without any treatment.

The Electrochemical Characteristics of Anodized Ti-29Nb-xZr Alloys

  • Lee, Kang;Choe, Han-Choel;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.219-219
    • /
    • 2009
  • In this study, electrochemical impedance characteristics of anodic oxide layer formed on titanium ternary alloy surface have been investigated, Titanium oxide layers were grown on Ti-29Nb-xZr(x=3, 5, 7, 10 and 15 wt%) alloy substrates using phosphoric acid electrolytes.

  • PDF

Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin;Kim, Chul Ki;Kim, Hak Yong;Seo, Min Kang;Park, Soo Jin
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.

Surface Modification of Titanium Based Biomaterials by Ion Beam

  • Liu, Xianghuai;Huang, Nan;Yang, Ping;Cai, Guanjun;Chen, Yuanru;Zheng, Zhi hong;Zhou, Zhuyao
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.8-19
    • /
    • 1995
  • Ion beam enhanced deopsition(IBED) was adopted to synthesize biocompatible titanium oxide film. Structure characteristics of titanium oxide film were investigated by RBS, AES and XRD. The blood compatibility of the titanium oxide film was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide film is improved significantly. The mechanism of anticoagulation of the titanium oxide film was discussed.

  • PDF

Area Effect on Galvanic Corrosion of Condenser Materials with Titanium Tubes in Nuclear Power Plants (Titanium 전열관을 사용하는 원전 복수기 재료의 Galvanic Corrosion에 미치는 면적의 영향)

  • Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 1993
  • Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, if this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R$_1$(surface area of carbon steel/surface area of Ti) and R$_2$(surface area of carbon steel/surface area of Cu) are very important for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when the ratio of surface area of Fe/ surface area of Al Brass is 1 while it is 570 mpy when this ratio is 10$^{-2}$ . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R$_1$ and R$_2$ on the polarization curve.

  • PDF

A STUDY ON SURFACE ALTERATION OF IMPLANT SCREWS AFTER FUNCTION

  • Han, Myung-Ju;Chung, Chae-Heon;Choi, Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.275-286
    • /
    • 2002
  • Statement of problem. Surface alteration of the implant screws after function may be associated with mechanical failure. Theses metal fatigue appears to be the most common cause of structural failure. Purpose. The purpose of this study was to evaluate surface alteration of the implant screws after function through the examination of used and unused implant screws in SEM(scanning electron microscope). Materials and methods. In this study, abutment screws(Steri-oss, 3i), gold retaining screw(3i) and titanium retaining screw(3i) were retrieved from patients. New, unused abutment and retaining screws were prepared for control group. Each of the old, used screws was retrieved with a screwdriver. And retrieved implant complex of Steri-oss system was prepared for this study. Then, SEM investigation and EDS analysis of abutment and retaining screws were performed. And SEM investigation of cross-sectioned sample of retrieved implant complex was performed. Results. In the case of new, unused implant screws, as maunfactured circumferential grooves are regularly examined and screw thread are sharply remained. Before ultrasonic cleansing of old, used implant screw, a lot of accumulation and corrosion products were existed. After ultrasonic cleansing of old, used implant screws, circumferential grooves as examined before function were randomly deepened and scratches increased. Also, dull screw thread was examined. More surface alterations after function were examined in titanium screw than gold screw. And more surface alteration was examined when retrieved with driver than retrieved without driver. Conclusions. These surface alteration after function may result in the screw instability. Regularly cleansing and exchange of screws was recommended. We recommend the use of gold screw rather than titanium screw, and careful manipulation of the driver.

The Biocompatibility of HA Film Deposition on Anodized Titanium Alloy

  • Lee, Kang;Choe, Han-Choel;Kim, Byung-Hoon;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.213-214
    • /
    • 2009
  • A thin film hydroxyapatite (HA) films was deposited on anodized titanium by RF sputtering method. The anodized titanium enhanced the biocompatibility of the Ti and the bioactivity was improved further by the HA deposited on the anodized Ti. $TiO_2$ layer with $0.2{\sim}0.5{\mu}$ diameter pore size was formed on the Ti surface by anodization. Anodized $TiO_2$ layer analysis HA film deposited, oxide pore size and number decreased compared with non-HA deposited surface. The corrosion resistance of HA deposited/anodized Ti was higher than that of the non-treatment Ti alloy in Hank's solution, indicating better protective effect. From the results of cell culture using MTT assays, the best cell proliferation showed in HA deposited surface after anodization of Ti surfaces compared with another surface treatment.

  • PDF

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

HISTOMORPHOMETRIC ANALYSIS FOR VENT AREA OF TITANIUM PLASMA SPRAYED IMZ IMPLANTS IN RABBITS (가토의 대퇴골에 매식된 titanium plasma sprayed IMZ 임플랜트 하단부 vent주위의 조직학적 형태계측학적 연구)

  • Han, Dong-Hoo;Kim, Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.171-178
    • /
    • 1994
  • This paper reports histologic and histomorphometric results concerning bone healing around vent area of 16 titanium plasma sprayed IMZ implants in rabbit femurs. Bone contact around the implants 8 weeks after placement showed a great deal of variability from 14.32% to 65.94% and mean total bone contact was 33.96%. The mean percent amount of bone contact was 43.68% in inner surface of vent and 27.79% in outer surface. Histologic examination of horizontal sections of vent area showed direct contact with living lamellar bone and some woven bone. The implants surface area not in contact with bone was in contact with collagenous connective tissue. But there was no sign of foreign-body reaction.

  • PDF

Fabrication of Hybrid Films Using Titanium Chloride and 2,4-hexadiyne-1,6-diol by Molecular Layer Deposition

  • Yun, Gwan-Hyeok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.418-418
    • /
    • 2012
  • We fabricated a new type of hybrid film using molecular layer deposition (MLD). The MLD is a gas phase process analogous to atomic layer deposition (ALD) and also relies on a saturated surface reaction sequentially which results in the formation of a monolayer in each sequence. In the MLD process, polydiacetylene (PDA) layers were grown by repeated sequential surface reactions of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet (UV) polymerization under a substrate temperature of $100^{\circ}C$. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the hybrid films. Polymerization of the hybrid films was confirmed by infrared (IR) spectroscopy and UV-Vis spectroscopy. Composition of the films was confirmed by IR spectroscopy and X-ray photoelectron (XP) spectroscopy. The titanium oxide cross-linked polydiacetylene (TiOPDA) hybrid films exhibited good thermal and mechanical stabilities.

  • PDF