• Title/Summary/Keyword: titanium (Ti)

Search Result 1,963, Processing Time 0.04 seconds

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.

Specific Binding of Streptavidin onto the Nonbiofouling Titanium/Titanium Oxide Surface through Surface-Initiated, Atom Transfer Radical Polymerization and Bioconjugation of Biotin

  • Kang, Sung-Min;Lee, Bong-Soo;Kim, Wan-Joong;Choi, In-Sung S.;Kil, Mun-Jae;Jung, Hyuk-Jun;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • Chemical modification of titanium/titanium oxide (Ti/$TiO_2$) substrates has recently gained a great deal of attention because of the applications of Ti/$TiO_2$-based materials to biomedical areas. The reported modification methods generally involve passive coating of Ti/$TiO_2$ substrates with protein-resistant materials, and poly(ethylene glycol) (PEG) has proven advantageous for bestowing a nonbiofouling property on the surface of Ti/$TiO_2$. However, the wider applications of Ti/$TiO_2$ based materials to biomedical areas will require the introduction of biologically active moieties onto Ti/$TiO_2$, in addition to nonbiofouling property. In this work, we therefore utilized surface-initiated polymerization to coat the Ti/$TiO_2$ substrates with polymers presenting the nonbiofouling PEG moiety and subsequently conjugated biologically active compounds to the PEG-presenting, polymeric films. Specifically, a Ti/$TiO_2$ surface was chemically modified to present an initiator for atom transfer radical polymerization, and poly(ethylene glycol) methacrylate (pEGMA) was polymerized from the surface. After activation of hydroxyl groups of poly(pEGMA) (pPEGMA) with N,N'-disuccinimidyl carbonate, biotin, a model compound, was conjugated to the pPEGMA films. The reactions were confirmed by infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle goniometry, and ellipsometry. The biospecific binding of target proteins was also utilized to generate micropatterns of proteins on the Ti/$TiO_2$ surface.

Characteristics of Silicides in Titanium Alloys Processed by HIP (티타늄합금에서 HIP에 의해 형성된 실리사이드의 특성)

  • Jeong, Hui-Won;Kim, Seung-Eon;Hyeon, Yong-Taek;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.31
    • /
    • pp.113-125
    • /
    • 2001
  • Silicon addition in titanium alloys generally results in solid solution hardening by silicon itself and precipitation hardening by titanium silicides. The morphology and distribution of the titanium silicides depend upon the alloy chemistry or the heat treatment condition, and play an important role in improving the mechanical properties of the alloys. In this study, the morphology and crystallographic characteristics of the titanium silicides in the Ti-Fe-Si alloy system were studied. Three types of silicides were found in the alloys; (1) interconnected chain-like silicides at grain boundary, (2) coarse silicides over im, (3) fine silicides smaller than 0.2m. Ti3Si was dominant in cast + HIP condition while Ti5Si3 was dominant in as-cast state. It is recognized that $Ti_5Si_3$$\rightarrow$$Ti_3Si$ transition occurred by the peritectoid reaction and it may be promoted by the pressure during HIP. However, in the case of the fine silicides, $Ti_3Si$ and $Ti_5Si_3$ were found simultaneously even after HIP. Such a fine silicide was found to have a crystallographic orientation relationship with matrix.

  • PDF

Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings (Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향)

  • Lee, Sang-Hwa;Kim, Myoung-Gyun;Sung, Si-Yuong;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

Blended Elemental P/M Synthesis of Titanium Alloys and Titanium Alloy-based Particulate Composites

  • Hagiwara, Masuo;Emura, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1030-1031
    • /
    • 2006
  • Titanium alloys and Titanium alloy-based particulate composites were synthesized using the blended elemental P/M route. First, processing conditions such as the fabrication of master alloy powder were investigated. Ti-6Al-4V, Ti-5Al-2.5Fe, Ti-6Al-2Sn-4Zr-2Mo, IMI685, IMI829, Timetal 1100 and Timetal 62S, and Ti-6Al-2Sn-4Zr-2Mo/ 10%TiB and Timetal 62S/10%TiB were then synthesized using the optimal processing conditions obtained. The microstructures and mechanical properties such as tensile strength and high cycle fatigue strength were evaluated.

  • PDF

Fabrication of $TiH_2$ Powders from Titanium Tuning Chip by Mechanical Milling

  • Jang, Jin-Man;Lee, Won-Sik;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.969-970
    • /
    • 2006
  • In present work, manufacturing technologies of titanium hydride powder were studied for recycling of titanium tuning chip and for this, attrition ball milling was carried out under $H_2$ pressure of 0.5 MPa. Ti chips were completely transformed into $TiH_2$ within several hundred seconds. Dehydrogenation process $TiH_2$ powders is consist of two reactions: one is reaction of $TiH_2$ to $TiH_x$ and the other decomposition of $TiH_x$ to Ti and $H_2$. The former reaction shows relatively low activation energy and it is suggested that the reaction is caused by introduction of defects due to milling.

  • PDF

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.

Titanium Dioxide Sol-gel Schottky Diodes and Effect of Titanium Dioxide Nanoparticle

  • Maniruzzaman, Mohammad;Zhai, Lindong;Mun, Seongcheol;Kim, Jaehwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2343-2347
    • /
    • 2015
  • This paper reports the effect of Titanium dioxide (TiO2) nanoparticles on a TiO2 sol-gel Schottky diode. TiO2 nanoparticles were blended with TiO2 sol-gel to fabricate the Schottky diode. TiO2 nanoparticles showed strong anatase and rutile X-ray diffraction peaks. However, the mixture of TiO2 sol-gel and TiO2 nanoparticles exhibited no anatase and rutile peaks. The forward current of the Schottky diode drastically increased as the concentration of TiO2 nanoparticles increased up to 10 wt. % and decreased after that. The possible conduction mechanism is more likely space charge limited conduction.

Preparation of $TiO_2$ Coated Coal Fly Ash and Photocatalytic Characterization ($TiO_2$ 피복 석탄회의 제조와 광촉매 특성에 관한 연구)

  • Yu, Yeon-Tae;Choi, Young-Yoon;Kim, Byoung-Gyu;Lee, Hee-Jung;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.690-696
    • /
    • 2001
  • $TiO_2$ coated coal fly ash has been prepared in order to develop the low price $TiO_2$ photocatalyst and spread out its utilizing field. $TiO_2$ particles is coated on the surface of coal fly ash by precipitation method. In this method, $TiCl_4$ aqueous solution was used as a titanium stock solution and $NH_4HCO_3$ was used as a precipitant. The titanium hydroxide precipitated on the surface of coal fly ash in these neutralizing reaction process was oxidized by heat treatment in temperature ranges of $300~700^{\circ}C$. The crystal structure of the generated titanium dioxide showed anatase type. The crystal size of titanium dioxide increased with raising the temperature of heat treatment, but the removal ability of NO gas decreased. When the titanium dioxide was heated at temperature ranges of $300~ 400^{\circ}C$ for 2 hours, the crystal size of titanium dioxide appeared about 9nm, and the removal rate of NO gas showed 85~ 92%. The whiteness of $TiO_2$ coated coal fly ash increased with raising the coating rate of titanium dioxide and the temperature of heat treatment.

  • PDF

The Production of TiCl4 from Titaniferrous Magnetite Slag by the Chlorination in a Fluidized Bed Reactor (함티탄자철광 Slag의 유동층 염소화에 의한 TiCl4의 제조)

  • Song, Ki-Young;Lee, Sang-Soon;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.64-74
    • /
    • 1993
  • The chlorination of the titanium slag from titaniferrous magnetite by the arc-smelting in a fluidized bed reactor was investigated to produce $TiCl_4$ from domestic titaniferrous magnetite. The optimum conditions are as follows : reaction temperature; $950^{\circ}C$, reaction time; 90min, $Cl_2$ gas velocity; 3cm/sec, and petroleum coke-to-titanium slag weight ratio; 0.18. Also the mean diameter of titanium slag and petroleum coke was $44.6{\mu}m$ and $67.9{\mu}m$ respectively. Under these conditions 97.07% of Ti component in the titanium slag was chlorinated and the purity of $TiCl_4$ from this chlorination was 96.2%.

  • PDF