• 제목/요약/키워드: titanium (Ti)

검색결과 1,964건 처리시간 0.025초

Surface characteristics and bioactivity of minocycline-treated Ti-6Al-4V alloy

  • Lee, Jung-Hyuk;Sun, Young-Gon;Na, Eui-Ri;Moon, Jong-Wook;Kim, Young-Joon
    • 구강생물연구
    • /
    • 제42권4호
    • /
    • pp.187-197
    • /
    • 2018
  • Chemical agents such as minocycline (MC) and citric acid (CA) were suggested in the treatment of contaminated implant surface. In this study, MC-HCl treatment was performed to enhance surface characteristics of titanium alloy surface. The purpose of this study was to assess the characteristics and the biocompatibility of Ti-6Al-4V surface treated by MC. Alpha-beta titanium alloy (Ti-6Al-4V) samples were prepared and they were divided into 6 groups according to chemical concentration and treatment time. These groups include 1) group I, non-treated smooth titanium alloy; 2) group II, MC 1.5 mg/mL for 1 hour; 3) group III, MC 1.5 mg/mL for 24 hours; 4) group IV, MC 15 mg/mL for 10 minutes; 5) group V, MC 100 mg/mL for 5 minutes; 6) group VI, pH1 CA for 3 minutes. The analysis of the surface characteristics of MC-treated titanium alloy was executed using scanning electron microscopy, roughness test, and X-ray photoelectron spectroscopy (XPS). Cell adhesion and MTT assay was done using MC3T3 cell. Titanium surfaces treated with MC indicated a more smoothened surface microstructure. For group II and III, the new peaks of rutile TiO2 were found. Group II and V have more basic group of Ti-OH form in XPS. In MTT assay, all MC-treated groups showed significantly higher cell viability compared to control. The surface roughness, crystal structure, surface hydrophilicity, cell viability of smooth titanium surface was improved by MC treatment. Compared with the control experiment and CA-treated group, smooth titanium surface treated with MC showed improved surface characteristics and cell biocompatibility.

기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성 (Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment)

  • 한창석;김준성;심우빈
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.242-250
    • /
    • 2023
  • Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.

TiO$_2$/Mg 반응에 의한 흑색산화티타늄 제조시 반응 변수 연구 (Study on the Reaction Parameters in the Preparation of Black Titanium Oxide by the Reaction of TiO$_2$/Mg System)

  • 정중채;조정웅;이혁희;이종현;원창환
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.851-858
    • /
    • 2001
  • One of the important phase of black titanium oxide is $Ti_4O_7$ which has the excellent properties such as the greatest electrical conductivity among the titanium oxides, chemical resistance against acidic and alkalic conditions and electro-wave absorption etc., so it has been considered as a promising material to be used widely all over the parts of industries. In this study, $Ti_4O_7$ phase was successfully synthesized by the reaction of TiO$_2$/ Mg system. With the change of the mole of TiO$_2$to Mg, the most excellent blackness was appeared in the 3.5 mole which was the smaller amount than the stoichiometric 4.0 mole. In addition, we found that the blackness decreased as the mole ratio of reactent increased. With decreasing particle size of magnesium, blackness of titanium oxide increased. The reaction property was changed with the compaction pressure, and optimum pressure was found to be 10 MPa. At 55$0^{\circ}C$ of reduction temperature, the blackness increased as the reaction time increased. The blackness of synthesized black titanium oxide was 14 to 18, and the average particle size was 0.2 $\mu\textrm{m}$.

  • PDF

수동형 Stainless Steel, Nickel-Titanium 및 엔진 구동형 Nickel-Titanium File의 근관형성 능력에 관한 비교 연구 (A STUDY ON COMPARISON OF STAINLESS STEEL, NICKEL-TITANIUM HAND, NICKEL-TITANIUM ENGINE-DRIVEN FILE INSTRUMENTATION USING COMPUTED TOMOGRAPHY)

  • 이황;임미경;이건일;이용근
    • Restorative Dentistry and Endodontics
    • /
    • 제23권1호
    • /
    • pp.391-400
    • /
    • 1998
  • The aim of this study was to determine the shaping ability of stainless-steel K file (S-S K file), nickel-titanium K file (Ni-Ti K file) and engine driven nickel-titanium file (Quantec file) in resin simulated root canal. Computed tomography was used to evaluate the change of the root canal morphology. Thirty nine resin simulated root canal were divided into four groups (A:12, B:12, C:12, D:3). Resin simulated canals were scanned by computed tomography before instrumentation (1st C-T scan). Canals were instrumented using step back preparation technique with S-S K file in group A and Ni-Ti K file in group B. Group C was prepared with engine driven Ni-Ti file. Group D was uninstrumented to compare the 1st C-T scan images with 2nd C-T scan images of root canal. Instrumented canals were again scanned using computed tomography (2nd C-T scan), and reformated images of the uninstrumented canals were compared with images of the instrumented canals. In the sections of 2mm and 6mm from the apex, Quantec file caused significantly less canal transportation than S-S K file and Ni-Ti K file (p<0.05). Quantec file produced more centered than S-S K file and Ni-Ti K file in the sections of 2mm and 4mm from the apex (p<0.05). There was no significant difference in the removed volume of canals among the each groups (p>0.05). However the removed canal volume from the apex to 5mm were significantly higher than them from 5mm to 1mm (p<0.05) in each groups. Under the conditions of this study, preparation with Quantec file was more effective and produce more appropriate canal shapes than S-S K file and Ni-Ti K file.

  • PDF

有機티타늄化合物에 關한 硏究 (Studies on the organic titanium Compounds)

  • 성좌경;최삼권
    • 대한화학회지
    • /
    • 제4권1호
    • /
    • pp.58-61
    • /
    • 1957
  • The organic titanium compounds, $Ti(OR)_4\;and\;Cl_2Ti(OR)_2$ were prepared by adding theoretical amounts of $TiCl_4$ to ROH in the medium of $CCl_4$. Among the compounds of the above two types, the former $Ti(OR)_4$was polymerized by refluxing them with R·OH and water at ordinary temperature and the latter, $Cl_2Ti(OR)_2$, by adding water to them.

  • PDF

Elastic and Electronic Properties of Point Defects in Titanium Carbide

  • Kang, Dae-Bok
    • 대한화학회지
    • /
    • 제57권6호
    • /
    • pp.677-683
    • /
    • 2013
  • A theoretical study of the electronic structures of $TiC_{1-x}$ and $Ti_{1-x}W_xC$ (x = 0, 0.25) is presented. The density of states and crystal orbital overlap population calculations were used to interpret variations of elastic properties induced by carbon vacancies and alloying substitutions. Our results show why the introduction of vacancies into TiC reduces bulk moduli, while W substitution at a Ti site increases the elastic modulus. The effect of the point defects on the bonding in TiC is investigated by means of extended Huckel tight-binding band calculations.

Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II] (The Study of Formation of Ti-silicide deposited with Composite Target [II])

  • 최진석;백수현;송영식;심태언;이종길
    • 한국재료학회지
    • /
    • 제1권4호
    • /
    • pp.191-197
    • /
    • 1991
  • Composite $TiSi_{2.6}$ target으로 부터 Ti-silicide를 형성시 단결정 Si기판과 다결정 Si내의 dopant의 확산 거동, 그리고 Ti-silicide 박막의 표면 거칠기를 secondary ion mass spectrometry (SIMS), 4-point probe, X-선 회절 분석, 표면 거칠기 측정을 통해 조사하였다. X-선 회절 분석결과 중착된 직후의 중착막은 비정질이었고, 단결정 Si기판에 증착된 막은 $800^{\circ}C$에서 20초간 급속 열처리 시 orthorhombic $TiSi_2$(C54 구조)로 결정화가 이루어졌다. 단결정 Si 기판과 다결정 Si에서 Ti-silicide 충으로의 dopant의내부 확산은 거의 발생하지 않았으며, 주입된 불순물들은 Ti-silicide/Si 계면 근처의 단결정 Si이나 다결정 Si 내부에 존재하고 있었다. 또한 형성된 Ti-silicide 박막의 표면 거칠기는 16-22nm이었다.

  • PDF

Ti-TiH2 혼합 분말의 레이저 직접 용융 공정을 이용한 다공성 티타 늄 부품 제조 연구 (Fabrication of Porous Titanium Parts by Direct Laser Melting of Ti-TiH2 Mixing Powder)

  • 윤혜정;서동명;우영윤;문영훈
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.21-26
    • /
    • 2019
  • Direct Laser Melting (DLM) of $Ti-xTiH_2$ (mixing ratio x = 2, 5, 10 wt.%) blended powder is characterized by producing porous titanium parts. When a high energy laser is irradiated on a $Ti-TiH_2$ blended powder, hydrogen gas ($H_2$) is produced by the accompanying decomposition of the $TiH_2$ powder, and acts as a pore-forming and activator. The hydrogen gas trapped in a rapidly solidified molten pool, which generates porosity in the deposited layer. In this study, the effects of a $TiH_2$ mixing ratio and the associated processing parameters on the development of a porous titanium were investigated. It was determined that as the content of $TiH_2$ increases, the resulting porosity density also increases, due to the increase of $H_2$ produced by $TiH_2$. Also, porosity increases as the scan speed increases. As fast solidified melting pools do not provide enough time for $H_2$ to escape, the faster the scan speed, the more the resulting $H_2$ is captured by the process. The results of this study show that the mixing ratio (x) and laser machining parameters can be adjusted to actively generate and control the porosity of the DLM parts.

Ti-Ta-Nb계 합금의 세포독성과 생체적합성의 평가 (THE EVALUATION OF CYTOTOXICITY AND BIOCOMPATIBILITY OF TI-TA-NB-BASE ALLOY)

  • 최득철;방몽숙;윤택림
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.250-263
    • /
    • 2006
  • Statement of problem: Ti-alloy has been used widely since it was produced in the United States in 1947 because it has high biocompatibility and anticorrosive characteristics. Purpose: The pure titanium, however, was used limitedly due to insufficient mechanical charateristics and difficult manufacturing process. Our previous study was focused on the development of a new titanium alloy. In the previous study we found that the Ti-Ta-Nb alloy had better mechanical characteristics and similar anticorrosive characteristics to Ti-6Al-4V Material and methods: In this study, the cytotoxicity of the Ti-Ta-Nb alloy was evaluated by MTT assay using MSCs(Mesenchaimal stem cells) and L929 cells(fibroblast cell line). The biocompatibility of the Ti-Ta-Nb alloy was performed by inserting the alloy into the femur of the rabbits and observing the radiological and histological changes surrounding the alloy implant. Results: 1. In the cytotoxicity test using MSCs, the 60% survival rate was observed in pure titanium, 84% in Ti-6Al-4V alloy and 95% in Ti-10Ta-10Nb alloy. 2. In the animal study, the serial follow-up of the radiographs showed no separation or migration revealing gradual bone ingrowth surrounding the implants. Similar radiographic results were obtained among three implant groups pure titanium, Ti-6Al-4V alloy and Ti-10Ta-10Nb alloy. 3. In the histologic examination of the bone block containing the implants. the bone ingrowth was prominent around the implants with the lapse of time. There was no signs of any tissue rejection, degeneration, or inflammation. Active bone ingrowth was observed around the implants. In the comparison of the three groups, the rate of bone ingrowth was better in the Ti-10Ta-10Nb alloy group than those in pure titanium group or Ti-6Al-4V alloy group. In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects. Conclusion: In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects.

Effects of Alloying Element and Heat Treatment on Properties of Cu-Ti Alloys

  • Suk, Han-Gil;Hong, Hyun-Seon
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.246-249
    • /
    • 2009
  • Cu-Ti alloys with titanium in the range of 0.5-6.0 wt% were developed to evaluate the effect of the titanium content and heat treatment on microstructure, hardness, and electrical conductivity. The hardness of the Ti-added copper alloys generally increased with the increase in titanium content and hardening was effective up to the 2.5 wt%-Ti addition. Microstructural examination showed that the second phase of $Cu_4Ti$ started to precipitate out from the 3.0 wt% Ti-addition, and the precipitate size and volume fraction increased with further Ti addition. Aging of the present Cu-Ti alloys at $450^{\circ}C$ for 1 h increased the hardness; however, the further aging up to 10 h did not much change the hardness. In the present study, it was inferred that in optimal Ti addition and aging condition Cu-Ti alloy could have the hardness and electrical conductivity values which are comparable to those of commercial Cu-Be alloy.