• Title/Summary/Keyword: tissue integration

Search Result 100, Processing Time 0.028 seconds

Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study

  • Xiang Jin;Jin-Young Park;Jung-Seok Lee;Ui-Won Jung;Seong-Ho Choi;Jae-Kook Cha
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • Purpose: Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. Methods: Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. Results: The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. Conclusions: Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.

Local tissue effects of various barrier membranes in a rat subcutaneous model

  • Naenni, Nadja;Lim, Hyun-Chang;Strauss, Franz-Josef;Jung, Ronald E.;Hammerle, Christoph H.F.;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.327-339
    • /
    • 2020
  • Purpose: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. Methods: Seven different membranes-3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)-were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. Results: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. Conclusions: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non-cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition.

I.T.I. Hollow Screw IMPLANT를 이용한 부분적 치아결손환자의 치험예 : 술전평가와 외과적술식

  • Kim, Hong-Gi
    • The Journal of the Korean dental association
    • /
    • v.29 no.6 s.265
    • /
    • pp.463-465
    • /
    • 1991
  • I.T.I. Hollow Screw Implant는 새로운 I.T.I. Bonefit의 槪念의 일부를 이루었으며, 從來의 I.T.I. IMPLANT의 10년 以上의 臨床經驗에 기초하고 있다. I.T.I. Implant의 特徵은 몇가지 있으나, 그 중에서도 特記할 만한 것은 1回法의 外科術式이라고 할 수 있다. 本論文에서는 I.T.I. Hollow Screw Implant를 사용한 部分的齒牙欠損患者의 治療에 대한 術前評價와 外科術式에 대하여 論하고저 한다. 植立된 111개 Implant중 110개가 合倂症을 나타내지 않고 Tissue-Integration을 達成했으며, 그 밖의 1개는 失敗했다. 이러한 結果는 1回法인 I.T.I. Hollow Screw Implant가 Tissue-Integration으로서 成功率이 높은 것을 証明하고 있다.

  • PDF

I.T.I. Hollow Screw Implant를 이용한 부분적 치아흠손환자의 치험예 : 술전평가와 외과적술식

  • Kim, Hong-Gi
    • The Journal of the Korean dental association
    • /
    • v.29 no.7 s.266
    • /
    • pp.535-542
    • /
    • 1991
  • I.T.I. Hollow Screw Implant는 새로운 I.T.I. Bonefit의 槪念의 일부를 이루었으며, 從來의 I.T.I. IMPLANT의 10년 以上의 臨床經驗에 기초하고 있다. I.T.I. Implant의 特徵은 몇가지 있으나, 그 중에서도 特記할 만한 것은 1回法의 外科術式이라고 할 수 있다. 本論文에서는 I.T.I. Hollow Screw Implant를 사용한 部分的齒牙欠損患者의 治療에 대한 術前評價와 外科術式에 대하여 論하고저 한다. 植立된 111개 Implant중 110개가 合倂症을 나타내지 않고 Tissue-Integration을 達成했으며, 그 밖의 1개는 失敗했다. 이러한 結果는 1回法인 I.T.I. Hollow Screw Implant가 Tissue-Integration으로서 成功率이 높은 것을 証明하고 있다.

  • PDF

The Application of Machine Learning Algorithm In The Analysis of Tissue Microarray; for the Prediction of Clinical Status

  • Cho, Sung-Bum;Kim, Woo-Ho;Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.366-370
    • /
    • 2005
  • Tissue microarry is one of the high throughput technologies in the post-genomic era. Using tissue microarray, the researchers are able to investigate large amount of gene expressions at the level of DNA, RNA, and protein The important aspect of tissue microarry is its ability to assess a lot of biomarkers which have been used in clinical practice. To manipulate the categorical data of tissue microarray, we applied Bayesian network classifier algorithm. We identified that Bayesian network classifier algorithm could analyze tissue microarray data and integrating prior knowledge about gastric cancer could achieve better performance result. The results showed that relevant integration of prior knowledge promote the prediction accuracy of survival status of the immunohistochemical tissue microarray data of 18 tumor suppressor genes. In conclusion, the application of Bayesian network classifier seemed appropriate for the analysis of the tissue microarray data with clinical information.

  • PDF

Engineered human cardiac tissues for modeling heart diseases

  • Sungjin Min;Seung-Woo Cho
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.32-42
    • /
    • 2023
  • Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed.

Expression of Chitinase Gene in Solanum tuberosum L.

  • Park, Kyung-Hwa;Yang, Deok-Chun;Jeon, Jae-Heung;Kim, Hyun-Soon;Joung, Young-Hee;Hyouk Joung
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 1999
  • In order to protect fungal diseases, leaf disc explants of Solanum tuberosum cultivar, Belchip, was infected with an Agrobacterium MP90 strain containing chimeric gene construct, consisting of antibiotic resistance and chitinase gene driven by the CaMV 35S promoter, for transformation. Regenerated multiple shoots were selected on a medium containing kanamycin and carbenicillin after exposure to Agrobacterium. The presence and integration of the npt II and chitinase gene were confirmed by polymerase chain reaction(PCR). Northern blot analysis indicated that the genes coding for the enzyme could be expressed in potato plants. The chitinase activity of transgenic potato plants was higher than the control potato.

  • PDF

Osteopromotive effect of Titanium Reinforced-ePTFE membrane (티타늄강화 차폐막의 골유도 재생 효과)

  • Lee, Jean;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.711-722
    • /
    • 2004
  • The purpose of this study is to evaluate the regenerated bone histollogically using titanium reinforced ePTFE(TR-ePTFE) membrane and to investigate cell occlusiveness, wound stabilization and tissue integration of TR-ePTFE membrane. Adult male rabbits (mean BW 2kg) and TR9W (W.L.Gore&Associate.INC,USA) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. TR-ePTFE membrane was applied to defect. Then guided bone regeneration was carried out using TR-ePTFE membrane and resorbable suture. At 2,4,8,12 weeks after the surgery, animals were sacrificed. Nondecalcified specimens were processed for histologic analysis. The result and conclusion of this study were as follows: 1. TR-ePTFE membrane had good ability of biocompatibility and cell occlusiveness. 2. space making for guided bone regenerayion was good at TR-ePTFE membrane. 3. Tissue integration was not good at TR-ePTFE membrane. So, wound stabilization was not good. 4. At 8 weeks, 12 weeks after GBR procedure, bone formation was seen. From the above results, TR-ePTFE membrane fixed tightiy on alveolar bone might be recommended for the early bone formation.

구강내 면역계에 대한 기본 고찰

  • Kim, Seong-Min
    • The Journal of the Korean dental association
    • /
    • v.40 no.8 s.399
    • /
    • pp.620-627
    • /
    • 2002
  • Oral health depends on the intergrity of the oral mucosa for prevention of the penetration of microbes and macromolecules that might be infectious, allergenic or antigenic. The intraoral immune systems include the tonsils, adenoids and nasopharyngeal-associated lymphoreticular tissue, or NALT. Mucosal inductive sites of the gastrointestinal tract(Peyer's patches and the appendix) and solitary lymph nodes collectively compose the gut-associated lymphoreticualr tissue, or GALT system. Both NALT and GALT are inductive regions where foreign antigens derived from viruses, bacteria, yeast and other molecules are encountered. The integration of tissues in NALT and GALT as part of the mucosal immune system, is very important to keep the oral immune system.

  • PDF

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.