DOI QR코드

DOI QR Code

Calculation of X-ray attenuation coefficients for normal and cancerous breast tissues

  • Aysun Boke (Balikesir University, Faculty of Arts and Sciences, Department of Physics, Cagis Campus)
  • Received : 2023.05.03
  • Accepted : 2023.09.24
  • Published : 2024.01.25

Abstract

The study was carried out by numerical integration based on the diffraction properties and elemental composition. The elemental compositions of breast tissues in the literature were tested. The photon attenuation coefficients calculated using the recent elemental composition were found within 0.2-16% for adipose tissue and within 0.04-17% for glandular tissue with the experimental reference data. The attenuation coefficients of cancerous breast tissue calculated according to the elemental content previously measured in breast cancer patients were found within 0-17% with experimental data in the literature. The attenuation coefficients are of great interest to medical research. To calculate realistic attenuation coefficients, the characteristic coherent scatter, which is most intense at small angles, must be considered. For this reason, experimentally measured form factor data were reviewed, and the most compatible one with the theoretical form factor data produced in this study was used at low momentum transfer x (0 < x ≤ 8 nm-1). The differential linear coherent scattering distributions were calculated for an energy value of 17.44 keV and compared with their experimental counterparts.

Keywords

Acknowledgement

This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) by grant no: 119F198.

References

  1. I. Akkurt, S. Al-Obaidi, H. Akyildirim, K. Gunoglu, Neutron shielding for 252Cf source: FLUKA simulations, Iran J. Sci. Technol. Trans. Sci. 46 (2022) 1055. 
  2. I. Akkurt, H.O. Tekin, Radiological parameters of bismuth oxide glasses using the PhyX/PSD software, Emerg. Mater. Res. 9 (2020) 1020. 
  3. F. Kulali, Simulation studies on the radiological parameters of marble concrete, Emerg. Mater. Res. 9 (2020) 1341. 
  4. R.B. Malidarre, I. Akkurt, Monte Carlo simulation study on TeO2-Bi20-PbO-MgO-B2O3 glass for neutron-gamma 252Cf source, J. Mater. Sci. Mater. Electron. 32 (2021), 11666. 
  5. M. Sarihan, Simulation of gamma-ray shielding properties for materials of medical interest, Open Chem. 20 (2022) 81. 
  6. M. Ucar, H.F. Kayiran, A.V. Korkmaz, Gamma-ray-shielding parameters of carbon-aramid epoxy composites, Emerg. Mater. Res. 11 (2022) 338. 
  7. F. Waheed, M. Imamoglu, N. Karpuz, H. Ovalioglu, Simulation of neutrons shielding properties for some medical materials, Int. J. Comput. Exp. Sci. Eng. 8 (2022) 5. 
  8. Z. Aygun, M. Aygun, An analysis on radiation protection abilities of different colored obsidians, Int. J. Comput. Exp. Sci. Eng. 9 (2023) 170. 
  9. O. Gunay, ˙ I.N. Altintas,, M. Demir, N. Yeyin, Dose calibrator measurements in the case of voltage fluctuations, Int. J. Comput. Exp. Sci. Eng. 9 (2023) 161. 
  10. B. Oruncak, Computation of neutron coefficients for B2O3 reinforced composite, Int. J. Comput. Exp. Sci. Eng. 9 (2023) 50. 
  11. R.B. Malidarre, H.O. Tekin, K. Gunoglu, H. Akyildirim, Assessment of gamma ray shielding properties for skin, Int. J. Comput. Exp. Sci. Eng. 9 (2023) 6. 
  12. E.E. Altunsoy, H.O. Tekin, A. Mesbahi, I. Akkurt, MCNPX simulation for radiation dose absorption of anatomical regions and some organs, Acta Phys. Pol., A 137 (2020) 561. 
  13. I. Akkurt, R.B. Malidarre, I. Kartal, K. Gunoglu, Monte Carlo simulations study on gamma ray-neutron shielding characteristics for vinyl ester composites, Polym. Compos. 42 (2021) 4764. 
  14. I. Akkurt, A.M. El-Khayatt, Effective atomic number and electron density of marble concrete, J. Radioanal. Nucl. Chem. 295 (2013) 633. 
  15. I. Akkurt, Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy 36 (2009) 1702. 
  16. I. Akkurt, Effective atomic numbers for Fe-Mn alloy using transmission experiment, Chin. Phys. Lett. 24 (2007) 2812. 
  17. R. Kurtulus,, T. Kavas, I. Akkurt, K. Gunoglu, H.O. Tekin, C. Kurtulus, A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works, J. Mater. Sci. Mater. Electron. 32 (2021), 13882. 
  18. G.R. Hammerstein, M.S. Daniel, W. Miller, D.R. White, M.E. Masterson, M.S. Helen, H.Q. Woodard, J.S. Laughlin, Absorbed radiation dose in mammography, Radiology 130 (1979) 485. 
  19. H.Q. Woodard, D.R. White, The composition of body tissues, Br. J. Radiol. 59 (1986) 1209. 
  20. D.R. White, L.H.J. Peaple, T.J. Crosby, Measured attenuation coefficients at low photon energies (9.88-59.32 keV) for 44 materials and tissues, Radiat. Res. 84 (1980) 239. 
  21. P.C. Johns, M.J. Yaffe, X-ray characterization of normal and neoplastic breast tissues, Phys. Med. Biol. 32 (1987) 675. 
  22. F.E. Carroll, J.W. Waters, W.W. Andrews, R.R. Price, D.R. Pickens, R. Willcott, P. Tompkins, C. Roos, D. Page, G. Reed, A. Ueda, R. Bain, P. Wang, M. Bassinger, Attenuation of monochromatic X-rays by normal and abnormal breast tissues, Invest. Radiol. 29 (1994) 266. 
  23. J.S. Al-Bahri, N.M. Spyrou, Photon linear attenuation coefficients and water content of normal and pathological breast tissues, Appl. Radiat. Isot. 47 (1996) 777. 
  24. R.C. Chen, R. Longo, L. Rigon, F. Zanconati, A. Pellegrin, F. De Arfelli, D. Dreossi, R.H. Menk, E. Vallazza, T.Q. Xiao, E. Castelli, Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography, Phys. Med. Biol. 55 (2010) 4993. 
  25. A. Tomal, I. Mazarro, E.M. Kakuno, M.E. Poletti, Experimental determination of linear attenuation coefficient of normal, benign and malignant breast tissues, Radiat. Meas. 45 (2010) 1055. 
  26. A. Tomal, Medidas Experimentais dos Coeficientes de Atenuacao de Tecidos Mam arios e sua Influencia no Contraste e Dose Mamografica, Universidade de Sao Paulo Brazil, 2007. 
  27. S. Mirji, N.M. Badiger, S.S. Kulkarni, P.B. Gai, M.K. Tiwari, Measurement of linear attenuation coefficients of normal and malignant breast tissues using synchrotron radiation, X Ray Spectrom. 45 (2016) 185.
  28. E. Fredenberg, F. Kilburn-Toppin, P. Willsher, E. Moa, M. Danielsson, D.R. Dance, K.C. Young, M.G. Wallis, Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions, Phys. Med. Biol. 61 (2016) 2595. 
  29. E. Fredenberg, P. Willsher, E. Moa, D.R. Dance, K.C. Young, M.G. Wallis, Measurement of breast-tissue x-ray attenuation by spectral imaging: fresh and fixed normal and malignant tissue, Phys. Med. Biol. 63 (2018), 235003. 
  30. L.D.H. Soares, M.S.S. Gobo, M.E. Poletti, Measurement of the linear attenuation coefficient of breast tissues using polienergetic x-ray for energies from 12 to 50 keV and a silicon dispersive detector, Radiat. Phys. Chem. 167 (2020) 1, 167, 108226. 
  31. ICRU (International Commission on Radiation Units and Measurements, Tissue Substitutes in Radiation Dosimetry and Measurement, ICRU Report vol. 44, Bethesda, MD: ICRU, 1989.. 
  32. G. Paterno, P. Cardarelli, M. Gambaccini, A. Taibi, Comprehensive data set to include interference effects in Monte Carlo models of x-ray coherent scattering inside biological tissues, Phys. Med. Biol. 65 (2020), 245002. 
  33. ICRU (International Commission on Radiation Units and Measurements), Photon, Electron, Proton, and Neutron Interaction Data for Body Tissues, ICRP Report vol. 46, Bethesda, MD: ICRU, 1992.. 
  34. M.E. Poletti, O.D. Goncalves, I. Mazzaro, X-ray scattering from human breast tissues and breast-equivalent materials, Phys. Med. Biol. 47 (2002) 47. 
  35. M.E. Poletti, O.D. Goncalves, I. Mazzaro, Coherent and incoherent scattering of 17.44 and 6.93 keV x-ray photons scattered from biological and biological-equivalent samples: characterization of tissues, X Ray Spectrom. 31 (2002) 57. 
  36. J.H. Hubbell, Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV, NSRDS-NBS 29 (1969). 
  37. A. Boke, Linear attenuation coefficients of tissues from 1 keV to 150 keV, Radiat. Phys. Chem. 102 (2014) 49-59. 
  38. J.H. Hubbell, I. Overbo, Relativistic atomic form factors and photon coherent scattering cross sections, J. Phys. Chem. Ref. Data 8 (1979) 69. 
  39. D. Schaupp, M. Schumacher, F. Smend, P. Rullhusen, J.H. Hubbell, Small angle Rayleigh scattering of photons at high energies: tabulations of relativistic HFS modified atomic form factors, J. Phys. Chem. Ref. Data 12 (1983) 467. 
  40. J.H. Hubbell, W.J. Veigele, E.A. Briggs, R.T. Brown, D.T. Cromer, R.J. Howerton, Atomic form factors, incoherent scattering functions, and photon scattering cross sections, J. Phys. Chem. Ref. Data 4 (1975) 471. 
  41. S.M. Midgley, Measurements of the X-ray linear attenuation coefficient for low atomic number materials at energies 32-66 and 140 keV, Radiat. Phys. Chem. 72 (2005) 525. 
  42. D.R. White, E.M. Widdowson, H.Q. Woodard, W.T. Dickerson, The composition of body tissues, Br. J. Radiol. 64 (1991) 149. 
  43. ICRP (International Commission on Radiological Protection), Report of the Task Group on Reference Man, in: ICRP Report, vol. 23, Pergamon, Oxford, 1975. 
  44. D.E. Peplow, K. Verghese, Measured molecular coherent scattering form factors of animal tissues, plastics and human breast tissue, Phys. Med. Biol. 43 (1998) 2431. 
  45. J. Kosanetzky, B. Knoerr, G. Harding, U. Neitzel, X-ray diffraction measurements of some plastic materials and body tissues, Med. Phys. 14 (1987) 526. 
  46. G. Kidane, R.D. Speller, G.J. Royle, A.M. Hanby, X-ray scatter signatures for normal and neoplastic breast tissues, Phys. Med. Biol. 44 (1999) 1791. 
  47. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, 2010.