• Title/Summary/Keyword: tissue decay

Search Result 39, Processing Time 0.025 seconds

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.

Effect of Maturity and Storage Temperature on Preservation of Fresh Jujube (숙도 및 저장온도가 생대추의 저장적성에 미치는 영향)

  • An, Duck-Soon;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.758-763
    • /
    • 1997
  • Fresh jujubes (Zizyphus jujuba Miller) of whitish green and red ripe maturities were stored at 5 different temperatures, and quality changes through the storage were measured to find an optimal storage condition. Respiration rates and their temperature dependences for both maturities were not different from each other, which suggested non-climacteric pattern of postharvest respiration. Red ripe fruits showed heavier weight and higher content in soluble solid and ascrobic acid compared with whitish green mature fruits. Through the storage of jujubes in perforated packages tissue softening and decay were main visual quality deteriorations with the former preceding the latter. The whitish green mature jujubes showed slower rate of quality changes in softening and decay than red ripe ones, and are thus more suitable for long term storage. In the storage, the whitish green fruits changed into red color, and showed increase in soluble solid and decrease in acidity and ascorbic acid content. Storing the jujubes at $-2^{\circ}C$ resulted in symptoms of chilling injury, and storing at higher temperatures above $0^{\circ}C$ accelerated the decay and softening. $0^{\circ}C$ was found to be optimal temperature for long term storage, where jujube had the lowest rate of quality changes without chilling injury. Even at optimal temperature of $0^{\circ}C$, however, storage life retaining freshness was only around 40 days which is not enough.

  • PDF

Under-Relaxed Image Restorative Technique for $Na^{23}$ MRI

  • Ro, D.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.64-67
    • /
    • 1992
  • To improve signal-to-noise ratio in sodium image, short echo time (2-3 ms) and long data acquisition (10-20 ms) protocols are used. Sodium in biological specimens demonstrates a bi-exponential decay of transverse magnetization and the fast decaying component of the sodium signal results in the reconstruction of images which are blurred significantly. The spatially-dependent nature of the blurs are due mainly to the presence of short local transverse relaxation values (0.7-3 ms) of sodium in tissue. We present an algorithm that corrects for object-dependent blurs due to fast-decaying T2 and improves the computational behavior of the algorithm by incorporating a relaxation parameter into the iterative process.

  • PDF

Method validation of detecting ethanol metabolites (EtG, EtS) in post-mortem spleen (비장 조직에서 에탄올 대사체(EtG, EtS)를 검출하는 방법과 유효성 확인)

  • Kim, Soo-Min;Jo, Young-Hoon;An, Song-Hie;Lee, Woo-Jae;Kwon, Mia
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • Ethyl glucuronide (EtG) and ethyl sulfate (EtS), which are ethanol metabolites, are direct indicators of ethanol intake; they have been studied in a variety of biological samples in forensic science. It is necessary to analyze ethanol metabolites to determine whether the ethanol detected in autopsy cases was due to alcohol consumption before death or due to the ethanol produced from post-mortem decay. In general, EtG and EtS are detected in the blood together with ethanol; however, it may be difficult to secure blood depending on the extent of decay. Therefore, the aforementioned method should be replaced by detecting the ethanol metabolites using tissue biological samples. In this study, we determined the optimal experimental conditions for detecting EtG and EtS from spleen samples using Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS). Herein, the test method was validated, and an analysis method was applied to the actual autopsy cases.

Regional Differences of Entry Rate of Freely Diffusible Substances from Peritoneal Cavity (복강내 확산성 물질의 부위별 흡수속도)

  • Cho, Byeong-Deuck;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.157-168
    • /
    • 1967
  • The entry of antipyrine and urea from the peritoneal cavity of rabbit into organ tissue and blood plasma was studied. Two hundred mg of antipyrine plus 300 mg of urea in 10 ml Ringer's solution was injected into the peritoneal cavity of anesthetized rabbit. The injection was made from above of a rabbit kept tying right side down and it enabled part of the abdominal organs (liver, intestine, kidney) was immersed in the injected solution and kept high concentration gradient throughout the experimental period. The remaining part of the organs was revered only by a thin film of the test solution. Subsequently, in this part of the organs the concentration gradient of the diffusible substances during entry was presumed to decrease as time elapsed. Four pieces of the liver tissue were taken namely, the right superficial, right deep, left superficial and left deep portions. Two were taken from the small intestine, one from the portion which was immersed in. the fluid and the other from that above the fluid mass. Both kidneys were separately analyzed. As a remote organ the gastrocnemius muscle was taken from the right leg of the animal. The intervals which were the time periods elapsed after injections were 5,7,10,15 or 30 minutes. At each point 5 animals were sacrificed and the concentrations of the test substances in the tissue water were measured. The results obtained were as follows. 1. In the liver the right portion which was immersed in the fluid showed higher concentration if the test substances than the left portion and the superficial region exceeded the deep region. The concentrations diminished as the time elapsed after infusion, particulary in the case of antipyrine, suggesting circulatory removal of the substances. In urea such decreasing tendency of the concentration was not obvious, and suggested slower removal rate of it as compared with that of antipyrine. 2. In the small intestine there was no regional difference in the concentration of the test substances. Because of the intestinal motility different portions of the intestine were seemed to have bathed in the fluid of the same concentration. In general the concentrations in the intestinal wall exceeded those of the liver, suggesting a slower removal rate than in the latter. 3. In the kidney the accumulation of the endogenous urea was predominant, and the accumulating mechanism in the renal tissue went on during the period of the experiment. Therefore it revealed increasing tendencies as the time elapsed. The penetration of the test substances in this organ from the peritoneal cavity seemed to be slower than in other abdominal organs, namely liver or small intestine. Part of the test substances in the kidney were obviously brought by the blood stream. 4. Rapid exponential decay of the concentration of antipyrine and of the osmolality of the peritoneal fluid was attributed to the extensive removal through the whole dimension of the peritoneal surface, and the remote organ such as the gastrocnemius muscle attained a fairly close value to that of the abdominal organs in less than 30 minutes. The factors which related to the absorption rate were discussed. They were the concentration gradient, permeability and the regional perfusion rate.

  • PDF

Host Plant and Damage Symptom of Fungus Gnats, Bradysia spp. (Diptera: Sciaridae) in Korea (Fungus gnats, Bradysia spp.의 기주 및 피해증상)

  • 이흥수;김태성;신현열;김형환;김규진
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.149-153
    • /
    • 2001
  • We surveyed on the host plants of Fungus gnat, Bradysia app. and found 21 species in the greenhouse and field. These are as follows: Cucumis sativus L., Cucumis melo L., Citrullus lanatus T., Cucurbita moschata F., Lycopersicon esculentum M., Capsicum annuum L (Pepper), Capsicum annuum L (Paprika), Lillium longiflorum T., Dianthus caryophyllus L., Rosa hybrida H., Gerbera jamesonii B., Chrysanthemum morifolium R, Phalaenopsis schilleriane R., Gladiolus grandiflours H., Zingiber officinale R., Cnidium officinale M., Canavalia gladiata DC., Angelica utilis M., Polygonatum odoratum D., Pinus densiflora S., and Pinus thunbergii P. Fungus gnat larvae cause damages to the root and promote decay and wilt by feeding on the roots and burrowing in plant tissue.

  • PDF

Constituents Released from Streptococcus mutans Attenuate Arecoline-mediated Cytotoxicity in HGF Cells by Altering Intracellular $Ca^{2+}$ Signaling

  • Erkhembaatar, Munkhsoyol;Oh, Hyuncheol;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.41-47
    • /
    • 2014
  • Streptococcus mutans (S. mutans) is a facultative anaerobic bacterium mainly found in the oral cavity and is known to contribute to tooth decay and gingivitis. Recent studies on intestinal microbiota have revealed that microorganisms forming a biofilm play important roles in maintaining tissue homeostasis through their own metabolism. However, the physiological roles of oral microorganisms such as S. mutans are still unclear. In our current study, we identified that constituents released from S. mutans (CR) reduce arecoline-mediated cytotoxicity without producing toxic effects themselves. Arecoline, as a major alkaloid of areca nut, is known to mediate cytotoxicity on oral epithelial cells and induces a sustained intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) increase that is cytotoxic. The exposure of human gingival fibroblast (HGF) cells to CR not only inhibited the sustained $[Ca^{2+}]_i$ increase but also the initial $[Ca^{2+}]_i$ elevation. In contrast, CR had no effects on the gene regulation mediated by arecoline. These results demonstrate that S. mutans has physiological role in reducing cytotoxicity in HGF cells and may be considered a novel pharmaceutical candidate.

Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain

  • Park, Chan-Woo;Lee, Sung-Min;Yoon, Ki-Jun
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.551-564
    • /
    • 2020
  • Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.

Early Stage Decomposition of Emergent Macrophytes (대형 수생식물의 초기 분해에 관한 연구)

  • Shin, Jin-Ho;Choi, Sang-Kyu;Yeon, Myung-Hun;Kim, Jeong-Myung;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.565-572
    • /
    • 2006
  • This study examined the decomposition of blades and culms of aquatic emergent plant species, Zizania latifolia, Phragmites communis and Typha angustata, which were the most frequent in Lake Paldang. The experiment was carried out from July to December, 2005 in fresh water of lake Paldang using litter bag method. The litter bags had 1.2 mm mesh size and were suspended at 1 m depth of water surface. Remaining mass of blades and culms of each species after 97 days was 21.2% and 22.6% of initial mass in Z. latifolia, 32.5% and 56.4% in P. communis and 44.7% and 38.1 % in T. angustata, respectively. The plant tissue having high N concentration and low C/N exhibited the faster decay rate than the others. However, the tissue of high content of lignin, cellulose, lignin:N, and cullulose:N showed a slow decomposition rate. Water temperature was the most effective environmental factor on the emergent macrophyte litter decomposition in aquatic ecosystems. According to the water temperature, DO, $NO_3^-$-N, and total phosphate concentration were changed in the linear way. The mass loss of plant tissue of emergent macrophytes showed positive relationship with P concentration in water. The experiments on the decomposition of the litter using different mesh sized litter bag did not show significant differences between them. The results suggest that the decomposition of emergent macrophytes in fresh water of lake Paldang, which showed features of lentic and lower part of a stream, was affected by microbial activities better than the micro-invertebrates such as shredders.

DNA Yield and PCR Success Rate of the Establishment Time of Wood Annual Ring: A Case Study of Korean Red Pine (Pinus densiflora) (목재의 나이테 생성 시기에 따른 DNA 추출 수율 및 PCR 성공률: 소나무(Pinus densiflora) 목재의 사례)

  • So Hyeon Kim;Byeong-Ju Lee;Ji Young Ahn;Jei-Wan Lee;Hyun-Mi Lee;Soo Hyung Eo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.554-560
    • /
    • 2023
  • To prevent illegal timber distribution, DNA markers have been used to identify the species and origin. However, extracting high-quality DNA from timber is difficult because of its physical and chemical properties. In this study, we investigated whether the age of timber tissue influences the yield of DNA extraction and the success rate of polymerase chain reaction (PCR) to understand the relationship between the establishment time of the wood annual ring and the extracted DNA concentration (ng/μl), purity (A260/A280), and PCR success rate (%) from pinewood, a major Korean domestic species. According to the results, it was observed that as the distance from the cambium increased, indicating that the tissue was older, the concentration and purity of the extracted DNA decreased significantly. For the trnM-trnV (285 bp) and rpoC1 (298 bp) regions, the PCR success rate was 100%. However, for the rbcL (1.3 kb) region, the PCR success rate was 66.67%. Moreover, PCR amplification of the rbcL region failed at all points older than 30 years. Thus, it is deduced that as time passes, along with the decay of timber cells, DNA is degraded, leading to a decrease in DNA concentration, purity, and PCR success rate. The results of this study are expected to be beneficial for future applications, such as the species identification of timber, providing valuable insights and potential utilization in this field.