• Title/Summary/Keyword: tissue architecture

Search Result 145, Processing Time 0.032 seconds

Effect of Nutrient Concentrations and Leaching Percentage on Growth and Nutrient Uptake by Perilla Frutesens Britton var. Japonica Hara in Plug Culture (잎들깨의 플러그육모에서 용탈률 및 시비농도가 생육 및 무기원소 흡수에 미치는 영향)

  • Choi, Jong-Myung;Yoon, Hwa-Mo;Park, Jong-Yoon
    • The Journal of Natural Sciences
    • /
    • v.13 no.1
    • /
    • pp.83-96
    • /
    • 2003
  • Effect of Nutrient Concentrations, fertigation frequency, and learching percentage on crop growth and nutrient concentrations in root media were evaluated. The treatment of each irrigation with $50 mg.L^{-1}$ of nitrogen in stage 2 and increase to $80 mg.L^{-1}$ nitrogen in stage 3 had the highest crop growth at 34 days after sowing among treatments tested. Feeding with low nutrient concentrations and elevated frequency decreased crop growth. In treatments of each leaching percentage, feeding with low nutrient concentrations and elevated frequency resulted in increased tissue nutrient contents. The less tissue potassium content and higher calcium and magnesium contents were observed in treatment of 50% leach than those in 0% leach. All treatment tested had soil solution pH higher than 6.8. Electrical conductivity in treatments of 50% leach were lower than those of 0% leach. Feeding with low nutrient concentrations and elevated feeding frequency in each leaching percentage resulted in increased electrical conductivity in soil solution of root media. Trends of medium nutrient concentrations were similar to those of electrical conductivity.

  • PDF

Consideration about the Diachronic change of Urban tissue and Architecture in Seoul - from analyzing of Gaokdohyung drawn in Joseon Period - (인사동 194번지의 도시적(都市的) 변화(變化)와 18세기 한성부(漢城府) 구윤옥(具允鈺) 가옥(家屋)에 관한 연구 -장서각 소장 이문내(里門內) 구윤옥가도형(具允鈺家圖形)의 분석을 중심으로-)

  • Chung, Jung-Nam
    • Journal of architectural history
    • /
    • v.17 no.3
    • /
    • pp.23-43
    • /
    • 2008
  • Seoul has been watched at its symbolic image which is the capital of one nation. since then Joseon was established. So, most of study about Seoul placed too much emphasis on like next; urban organization, palace, government office and public establishment. On the other hand, it is lacking in study of the individual building, the residential district, the change of building-lot. This study is to make up a deficiency from study of Gaokdohyung(家屋圖形site and floor plan). Gaokdohyung(家屋圖形) is drawings of building lots & houses existed in Hanseongbu漢城府(modem Seoul). It is possessed in Jangseogak and all 24 sheets. It is merely 24sheets but has many urban information in that. Housing of number 116 expressed in Gaokdohyung are consist on the house of Sadaebu士天王(noble class) Joongin中人(middle class) Sangmin常民(commoner), Villa(Byeolseo別墅) and connecting stores etc. Houses in Gaokdohyung has characteristic that most building lot is very specious and owners are variety of social position. The study of Gaokdohyung will progress through analyzing diachronic change of individual building lot & house. In the event, results of this study will help to find out change of urban tissue & architecture. So, i intend to seek for entity of urban tissue and urban house in Joseon Period differ from now, and to study out those have been changed continuously forward now.

  • PDF

Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery.

An Overview of Laser-assisted Bioprinting (LAB) in Tissue Engineering Applications

  • Ventura, Reiza Dolendo
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • Biological tissues and organs are composed of different arrays of cells, biochemical cues, and extracellular matrices arranged in a complex microarchitecture. Laser-Assisted Bioprinting (LAB) is an emerging and promising technology that is reproducible with high accuracy that can be used for fabricating complex bioengineered scaffolds that mimic tissues and organs. The LAB process allows researchers to print intricate structural scaffolds using cells and different biomaterials essential for facilitating cell-scaffold interaction and to induce tissue and organ regeneration which cannot be achieved in a traditional scaffold fabrication. This process can fabricate artificial cell niches or architecture without affecting cellular viability and material integrity. This review tackles the basic principles and key aspects of Laser-Assisted Bioprinting. Recent advances, limitations, and future perspectives are also discussed.

Feasibility of fully automated classification of whole slide images based on deep learning

  • Cho, Kyung-Ok;Lee, Sung Hak;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • Although microscopic analysis of tissue slides has been the basis for disease diagnosis for decades, intra- and inter-observer variabilities remain issues to be resolved. The recent introduction of digital scanners has allowed for using deep learning in the analysis of tissue images because many whole slide images (WSIs) are accessible to researchers. In the present study, we investigated the possibility of a deep learning-based, fully automated, computer-aided diagnosis system with WSIs from a stomach adenocarcinoma dataset. Three different convolutional neural network architectures were tested to determine the better architecture for tissue classifier. Each network was trained to classify small tissue patches into normal or tumor. Based on the patch-level classification, tumor probability heatmaps can be overlaid on tissue images. We observed three different tissue patterns, including clear normal, clear tumor and ambiguous cases. We suggest that longer inspection time can be assigned to ambiguous cases compared to clear normal cases, increasing the accuracy and efficiency of histopathologic diagnosis by pre-evaluating the status of the WSIs. When the classifier was tested with completely different WSI dataset, the performance was not optimal because of the different tissue preparation quality. By including a small amount of data from the new dataset for training, the performance for the new dataset was much enhanced. These results indicated that WSI dataset should include tissues prepared from many different preparation conditions to construct a generalized tissue classifier. Thus, multi-national/multi-center dataset should be built for the application of deep learning in the real world medical practice.

Chondrocutaneous posterior auricular artery perforator free flap for single-stage reconstruction of the nasal tip: a case report

  • Lee, Jun Yong;Seo, Jeong Hwa;Jung, Sung-No;Seo, Bommie Florence
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.6
    • /
    • pp.337-340
    • /
    • 2021
  • Full-thickness nasal tip reconstruction is a challenging process that requires provision of ample skin and soft tissue, and intricate cartilage structure that maintains its architecture in the long term. In this report, we describe reconstruction of a full-thickness nasal tip and ala defect using a posterior auricular artery perforator based chondrocutaneous free flap. The flap consisted of two lay ers of skin covering conchal cartilage, and was based on a perforating branch of the posterior auricular artery. A superficial vein was secured at the posterior margin. The donor perforator was anastomosed to a perforating branch of the lateral nasal artery. The superficial vein was connected to a superficial vein of the surrounding soft tissue. The donor healed well after primary closure. The flap survived without complications, and the contour of the nasal rim was sustained at follow-up 6 months later. As opposed to combined composite reconstructions using a free cartilage graft together with a small free flap or pedicled nasolabial flap, the posterior auricular artery perforator free flap encompasses all required tissue types, and is similar in contour to the alar area. This flap is a useful option in single-stage reconstruction of nasal composite defects.

Recent advances in spatially resolved transcriptomics: challenges and opportunities

  • Lee, Jongwon;Yoo, Minsu;Choi, Jungmin
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.113-124
    • /
    • 2022
  • Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at single-molecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 ㎛ resolution. Unfortunately, neither imaging-based technology nor capture-based method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization.

Tree Biotechnology and Environmental Concerns

  • Kant, Tarun;Emmanuel, C.J.S.K.
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • Forestry sector has witnessed some unprecedented events in the recent past both in terms of galloping biotechnological developments and heated environmental debates over risks associated with release of transgenic trees. Improvements in the in vitro propagation techniques has made it possible to develop tissue culture based plant regeneration protocols just for about any tree species. And with the inclusion of every new species within the realms of tissue culture technology, it becomes a candidate for genetic improvement through recombinant DNA technology, the so called genetic engineering. Poplars and their hybrids serve as the model tree species on which most of the genetic transformation work as been carried out. A lot of work has also gone in genetic transformation of fruit trees and trees of horticultural interests. Trees have been successfully transformed for traits ranging from reduction of length of juvenile phase to alteration of tree architecture to altering wood quality by lignin and cellulose modification. More-over trees have been genetically engineered successfully to combat various types of insect pests and pathogens causing diseases. But all these developments have ignited controversies over the possible benefits and risks associated with transgenic plantations by various environmental agencies and activists. Solutions to most of these concerns can be found out with more intensive prioritized research.

Electrohydrodynamic Jet Process for Pore-Structure-Controlled 3D Fibrous Architecture As a Tissue Regenerative Material: Fabrication and Cellular Activities

  • Kim, Minseong;Lee, Hyeongjin;Kim, GeunHyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.134.1-134.1
    • /
    • 2017
  • In this study, we propose a new scaffold fabrication method, "direct electro-hydrodynamic jet process," using the initial jet of an electrospinning process and ethanol media as a target. The fabricated threedimensional (3D) fibrous structure was configured with multilayered microsized struts consisting of randomly entangled micro/nanofibrous architecture, similar to that of native extracellular matrixes. The fabrication of the structure was highly dependent on various processing parameters, such as the surface tension of the target media, and the flow rate and weight fraction of the polymer solution. As a tissue regenerative material, the 3D fibrous scaffold was cultured with preosteoblasts to observe the initial cellular activities in comparison with a solid-freeform fabricated 3D scaffold sharing a similar structural geometry. The cell-culture results showed that the newly developed scaffold provided outstanding microcellular environmental conditions to the seeded cells (about 3.5-fold better initial cell attachment and 2.1-fold better cell proliferation).

  • PDF

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF