• 제목/요약/키워드: tire simulation

검색결과 186건 처리시간 0.036초

원주방향 직선형 그루브의 랜덤배열에 의한 타이어 트레드 피치 소음 제어 시스템 (Tire Tread Pitch Noise Control System by Random Arrangement of Circumference Direction Straight Type Groove)

  • Kim, B.S.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.98-108
    • /
    • 1994
  • An assessment of a mathematical method of synthesing tire tread pitch noise spectra is studied. The method is based on the summation of phasors and the calculated spectra are conveniently generated as computer printout in the form of bar graph. The technique, its usefulness, its limitations and the implications of using such a model are discussed. This paper presents a basic study on optimum pitch arrangement for prediction and control of tire tread pitch noise in constraint condition relatied with tire properties, thus enabling optimum tread pitch arrangements to be determined at the design stage, by application of old tire tread pitch simulation.

  • PDF

System Identification and Modeling for the Simulation of Tire Roller

  • Ko, Min-Seok;Jeong, Seong-Hark;Kim, Sang-Gyum;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.161.1-161
    • /
    • 2001
  • Tire roller is one of the most useful machines for the road constructions site. In this research, we are trying to develop tire roller which is operated by hydraulic transmission system instead of mechanical one. Now, we are trying to design the controller of tire roller in order to improve performance. Our present system model is somewhat different from the actual experimental results. Therefore we would like to develop new accurate modeling through ARX model by system identification method with random inputs. In this paper, we applied it to the steering system only. Later we will apply it to the traction system and expand to the whole tire roller system.

  • PDF

비선형 관측기를 이용한 차량의 타이어 횡력 감지시스템 개발 (Development of Tire Lateral Force Monitoring Systems Using Nonlinear Observers)

  • 김준영;허건수
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.169-176
    • /
    • 2000
  • Longitudinal and lateral forces acting on tires are known to be closely related to the tract-ability braking characteristics handling stability and maneuverability of ground vehicles. In thie paper in order to develop tire force monitoring systems a monitoring model is proposed utilizing not only the vehicle dynamics but also the roll motion. Based on the monitoring model three monitoring systems are developed to estimate the tire force acting on each tire. Two monitoring systems are designed utilizing the conventional estimation techniques such as SMO(Sliding Mode Observer) and EKF(Extended Kalman Filter). An additional monitoring system is designed based on a new SKFMEC(Scaled Kalman Filter with Model Error Compensator) technique which is developed to improve the performance of EKF method. Tire force estimation performance of the three monitoring systems is compared in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with the combined-slip Magic Formula tire model. The built in our Lab. simulation results show that the SKFMEC method gives the best performance when the driving and road conditions are perturbed.

  • PDF

유전자 알고리즘을 이용한 타이어 공력소음의 저감 (Reduction of Air-pumping Noise based on a Genetic Algorithm)

  • 김의열;황성욱;김병현;이상권
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.61-73
    • /
    • 2012
  • The paper presents the novel approach to solve some problems occurred in application of the genetic algorithm to the determination of the optimal tire pattern sequence in order to reduce the tire air-pumping noise which is generated by the repeated compression and expansion of the air cavity between tire pattern and road surface. The genetic algorithm has been used to find the optimal tire pattern sequence having a low level of tire air-pumping noise using the image based air-pumping model. In the genetic algorithm used in the previous researches, there are some problems in the encoding structure and the selection of objective function. The paper proposed single encoding element with five integers, divergent objective function based on evolutionary process and the optimal evolutionary rate based on Shannon entropy to solve the problems. The results of the proposed genetic algorithm with evolutionary process are compared with those of the randomized algorithm without evolutionary process on the two-dimensional normal distribution. It is confirmed that the genetic algorithm is more effective to reduce the peak value of the predicted tire air-pumping noise and the consistency and cohesion of the obtained simulation results are also improved in terms of probability.

자동차 진동해석을 위한 자동차 현가계의 모델링 (Modeling of Automobile Suspension System for Analyzing Automobile Vibration)

  • 이태근;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.135-147
    • /
    • 2005
  • As automobile technology advances, a smoother ride with less noise is desired. In order to achieve these purposes, a study on the vibration and noise produced by a moving automobile was carried out and a model for tire vibration characteristics which influence the ride performance was developed. The model was verified through simulations and experiments. The developed model was then applied to a half car model and automobile vibrations were analyzed. The effects of tire design parameters on the automobile vibration energy were investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model was built to analyze automobile vibration. The characteristics of the nonlinear model for a shock absorber were applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, were compared with the 5-DOF half car model where the tire was modeled with linear springs. The results of the 17-DOF model are close to the experimental results. Using the 17-DOF model, the influence of tire design parameter were considered. According to the analysis results, the vibrations at seat/body/wheel were predicted by simulation and experiment.

바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어 (Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control)

  • 양홍;최용호;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어 (Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS)

  • 임성진;남기홍;이호석
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.