• Title/Summary/Keyword: tire simulation

Search Result 186, Processing Time 0.029 seconds

Development and Comparative Study on Tire Models In the AutoDyn7 Program

  • Han, Dong-Hoon;Sohn, Jeong-Hyun;Kim, Kwang-Suk;Lee, Jong-Nyun;Yoo, Wan-Suk;Lee, Byun-Hoon;Choi, Jae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.730-736
    • /
    • 2000
  • In this paper, several tire models (Magic formula, Carpet plot, VA tire, DADS tire and STI tire) are implemented and compared. Since the STI (System Technology Inc.) tire model in the AutoDyn7 program is in a good agreement to NADSdyna STI tire model and experiment, it is selected as a reference tire model for the comparison. To compare tire models, input parameters of each tire model are extracted from the STI tire model to preserve the same tire properties. Several simulations are carried out to compare performances of tire models, i. e., bump simulation, lane change simulation, and pulse steering simulation. The performances in vehicle maneuverability are also compared with the four parameter evaluation method.

  • PDF

Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces (전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

A Numerical Simulation of a Multi-phase Flow mixed with Air and Water around an Automobile Tire

  • 우종식;김항우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.101-107
    • /
    • 1998
  • A three-dimensional multi-phase flow is simulated around a smooth tire. This simulation is conducted by solving Navier-Stokes equation with a k-$\varepsilon$ turbulent model. The numerical calculations are carried out by modeling a multi-phase free surface flow mixed with air and water at the inlet. The numerical solutions show an intuitively resonable behavior of water around a moving tire. The calculated pressure around the tire surface along the moving direction is presented. The moving velocities of the tire are chosen to be 30, 40, 60, and 70 km/h. The numerically simulated pressures around the tire are compared with existing experimental data. The comparison shows a new possible tool of analyzing a hydroplaning phenomenon for an automobile tire by means of a computational fluid dynamics.

  • PDF

Hydraulic System Simulation and Vehicle Dynamic Modeling for the Analysis and Development of Tire Roller Prototype (유압 구동식 타이어 로울러 Prototype의 유압 시스템 설계 및 차량 동역학적 모델링)

  • 박춘식;김준호;김상겸;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.137-137
    • /
    • 2000
  • In this research. we developed Tire Roller Prototype which is operated hydraulic transmission system. For develop the theoretically computer aided system, we practiced the simulation of hydraulic system and dynamic modeling and will compare with the experiment results of Tire Roller Prototype. We conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. Finally, we will design the controller, which can manage the hydraulic circuit of servo mechanism system. We define new hydraulic system and integrate modeling of Tire Roller through simulation of h\ulcornerdraulic system and design of controller. From above procedure. Hydraulic transmission system characteristics and target performance can be investigated. To follow the required performance, we select the parts of Tire Roller. We manufactured the prototype of Tire Roller, and will install the equipment for experiment.

  • PDF

Development of Finite Element Tire Model for Vehicle Dynamics Analysis (차량동역학 해석용 타이어 유한요소 모델 개발)

  • Jung, Sung Pil;Lee, Tae Hee;Kim, Gi Whan;Yun, So Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.858-861
    • /
    • 2014
  • This paper presents a simplified finite element tire model for vehicle dynamics analysis. The classical finite element tire model was too big to simulate dynamic properties of the tire. In the simplified model, number of nodes of the tire model was dramatically reduced, and thus its simulation time was several times less than the classical model. Bead, carcass, belt which have an important role to the dynamic characteristics of tire were replaced by simple axis symmetric membrane elements. Also the rebar element was deleted. The tire model has been verified by comparing vertical stiffness data of the simulation model to the test data.

  • PDF

A Simulation Model for Supporting System Design of Tire Manufacturing Cell (타이어 제조셀 시스템설계 지원을 위한 시뮬레이션 모델)

  • 문덕희;장구길
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.27-38
    • /
    • 2000
  • For developing a new Tire Manufacturing Cell, the cooperation between the designer of facilities and the designer of system is very important. The purpose of this paper is to develop a simulation model that can be applied to the system design of Tire Manufacturing Cell. The mechanic characteristics of new facilities are obtained from facility design team and the simulation model is developed with SIMPLE++ using those input data. A model for estimating the number of tire drum required is also suggested and it is verified with numerical examples. The results of simulations can be fed back to the facility design team and used for modifying the structure of the facilities.

  • PDF

FINITE ELEMENT ANALYSIS OF A STEADY-STATE ROLLING TIRE TAKING THE EFFECT OF TREAD PATTERN INTO ACCOUNT

  • KIM K. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.101-107
    • /
    • 2006
  • The force and moment simulation of a steady-state rolling tire taking the effect of tread pattern into account is described using a steady-state transport method with ABAQUS. Tread meshes can not fully consider a tread pattern because detailed tread meshes are not allowed in the steady-state transport method. Therefore, the tread elements are modeled to have orthotropic property instead of isotropic property. The force and moment simulation has been carried out for the cases of both isotropic and orthotropic properties of tread elements. Both cases of simulation results are then compared with the experimental results. It is verified that the orthotropic case is in a better agreement with the experimental result than the isotropic case. Angle effects of tread pattern have been studied by changing the orientation angle of orthotropic property of tread. It is shown that the groove angle in the tread shoulder region has a more effect on force and moment of a tire than that in the tread center region.

The Tire Model in the Simulation of The Tractor Motions

  • Verschoore, Reinhart
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1157-1165
    • /
    • 1993
  • The influence of tire characteristics is investigated by the simulation of an agricultural tractor. First the simulation of the tire is discussed. Different models are proposed and evaluated on their validity and their applicability . Also the practical measurement of some parameters is discussed. In a second paragraph the tractor model used in presented. In a second paragraph the tractor model used is presented. In the third part some results of the simulation are communicated . Beside the normal motions along and around the lateral axis, special attention is attracted on the hop. But one of the conclusions is that the simulation of hop is not possible without non-linear elements.

  • PDF

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

AEBS Algorithm with Tire-Road Friction Coefficient Estimation (타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘)

  • Han, Seungjae;Lee, Taeyoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.