• Title/Summary/Keyword: tire road noise

Search Result 93, Processing Time 0.019 seconds

A Study on the development of Algorithm for Removing Noise from Road Crack Image (도로면 크랙영상의 노이즈 제거 알고리즘에 관한 연구)

  • Kim Jung-Ryeol;Lee Se-Jun;Choi Hyun-Ha;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.535-538
    • /
    • 2002
  • Machine vision algorithms, which are composed of noise elimination algorithm, crack detection and mapping algorithm, and path planning algorithm, are required for sealing crack networks effectively and automation of crack sealing.. Noise elimination algorithm is the first step so that computer take cognizance of cracks effectively. Noises should be removed because common road includes a lot of noises(mark of oil, tire, traffic lane, and sealed crack) that make it difficult the computer to acknowledge cracks accurately. The objective of this paper is to propose noise elimination algorithm, prove the efficiency of the algorithm through coding. The result of the coding is represented in this paper as well.

  • PDF

Noise Reduction of Concrete Pavement by Texture Design (콘크리트 포장 표면처리 방법에 따른 소음 감소 방안 연구)

  • Mun, Jun-Beom;Park, Jin-Whoy;Kwon, Soon-Min;Han, Seung-Hwan;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.123-136
    • /
    • 2004
  • This study tries to compare the noise difference by various surface treatments and to propose appropriate tinning methods. As literature reviews, longitudinally tined pavement is effective to reduce noise made between tire and pavement surface. Various surface treatments were applied to some sections of test road. In case of car, about 2$\sim$3dB(A) was reduced in the section of uniform space 18mm longitudinal tinning. The peak frequency point for truck case happened between 200 and 600 Hz. The maximum noise of car was measured at about 1000Hz. Therefore, it Is proved that surface treatment methods can have a large affect on noise generation. With a result that friction test, the transverse tined pavement showed better frictional characteristics than the longitudinally tined pavement, but as a whole it came out satisfactory result. Results from this study are of early age, so it is required to check the performance continuously.

  • PDF

Evaluation on Riding comfort of A Passenger with Various Surface Textures of Concrete Pavement in Tunnels (터널 내 콘크리트포장 표면처리공법 별 탑승자의 주행쾌적성 평가)

  • Lee, Kyungbae;Lee, Jaehoon;Sohn, Duecksu;Kwon, Soonmin
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.155-164
    • /
    • 2014
  • PURPOSES : The purpose of this article is to compare and evaluate the riding comfort of a passenger in tunnels depending on different surface textures of concrete pavement. METHODS : Evaluation of riding comfort is conducted at 17 sections, which have different surface texture such as transverse tinned(TT), longitudinal tinned(LT) and diamond grinded(DG). A triaxial accelerometer was set up on the passenger seat surface of the test vehicle to measure vibrations of an occupant, then the effects of vibration on comfort and health were evaluated by ISO 2631. And microphones were installed at passenger's ears height to measure sound pressure level(SPL) in the test vehicle. Additionally, a surface microphone was installed on the inside of wheel arch to evaluate noise between tire and pavement by NCPX method. All tests were conducted cruising at 100km/h. RESULTS : The results of all tests are as follows. First, both vibration magnitudes for comfort and for health in LT and DG sections are almost same and they represent lower than those in TT sections. Second, the average SPL of DG shows the lowest decibels among them. And third, it is founded that interior noise is significantly affected by noise between tire and pavement. CONCLUSIONS : It may be concluded that DG can provide more excellent riding comfort to passenger than LT or TT. Therefore, it is necessary to consider applying DG to existing pavement surface to improve surface condition when the driving environment especially requires riding comfort like a long tunnel.

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

Computer Simulation of Rubber Flow for Mold Profile in Rubber Shaping Process (고무 성형 공정에서 금형 형상에 따른 고무 흐름의 컴퓨터 모사)

  • Lee, Dan Bi;Lee, Min A;Choi, Sung Hyun;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.220-224
    • /
    • 2014
  • The tire tread is contacted with road surface directly. It gives significant effect on the breaking conditions, traction, noise and so on. The tread having grooves with complex geometry is molded by shaping process. The flow behavior of tread rubber in a mold affects the quality of the tread and it leads to the running performance of automobile. In this study, the flow behavior of rubber in shaping process has been investigated by computer simulation. The objective of flow simulation is the design of tread shape based on the contact of rubber on the mold surface and flow behavior of rubber. Different sequences of contact of rubber on the mold surface and flow behavior of rubber are observed according to the shape of tread on the mold surface. It was verified that the shape of tread gives significant effect on the flow behavior of rubber. Different flow behaviors of rubber and sequential contact of rubber to the mold surface were observed according to the shape of tread on the mold surface. Therefore, we have identified that the shape of tread give a change in the flow behavior of rubber.

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

Vehicle Dynamic Analysis Using Nonlinear Finite Element Analysis Program(LS-DYNA) (비선형 유한요소 해석프로그램(LS-DYNA)을 이용한 차량 동력학해석)

  • Min, Han-Ki;Lee, Hyun;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.36-42
    • /
    • 2002
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness(NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the virtual proving ground(VPG) approach for obtaining the dynamic characteristics. VPG approach uses a nonlinear, dynamic, finite element code(LS-DYNA3D) which expands the application boundary outside the classic linear, antic assumptions. VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.

The Performance Analysis of Diamond Grinding for Existing Concrete Pavement (기존 콘크리트 포장의 성능 향상을 위한 다이아몬드 그라인딩 공법의 초기 공용성 평가)

  • Jung Jong-Duck;Ryu Sung-Woo;Han Seung-Hwan;Cho Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.77-88
    • /
    • 2006
  • The maintenance / repair of concrete pavements has become an issue as a result of increasing of concrete pavements' service year. Asphalt overlay is applied to the concrete pavements after partial repairs on all occasions. This thesis discusses the application standard, evenness, skid resistance, noise, economical efficiency, extension of life span, etc. of diamond grinding, a method of maintenance about concrete pavements. Based on this, it was applied to the field and measured the performance. It was measured the longitudinal evenness of before and after the construction through measurement equipment. and surveyed the skid resistance the each lane classified using the SN standard value. In case of noise, it is selected the kind of vehicle, velocity, then measured the noise between control and constructed site. In addition, it is evaluated the average texture depth. As a result of the analysis, longitudinal evenness is improved about $6{\sim}40%$, skid resistance is improved 66% at first section,37% at second section. Noise is reduced 3.4dB average, and average texture depth is 79% deeper than control section. Therefore, it can be concluded that diamond grinding is suitable as maintenance / repair method of concrete pavements.

  • PDF

Development of Base Concrete Block for Quiet Pavement System (저소음 포장용 기층 콘크리트 블록 개발)

  • Lee, Kwan-Ho;Park, Woo-Jin;Kim, Kwang-Yeom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • The rapid economic development induced the massive road constructions, becoming bigger and high-speed of the vehicles. However, it brings lots of social problems, such as air pollutions, traffic noise and vibration. Special concrete block for the base course of asphalt pavement is needed to decrease traffic noise such as tire's explosive and vehicles sound, applying Helmholtz Resonators theory to asphalt pavement. If it is applied to the area where it happens considerable noise such as a junction, the street of a housing complex and a residential street, it is one of considerable method to solve the social requirements of noise problem. This research examines couple of laboratory tests for the sound absorption effect of the concrete block and the base concrete block. There are specimens which is fixed hall-size, space, depth as the condition of this research, and these are analysed of noise decrease effect using different condition of the first noise of each vehicle. As a result of analysis data according to vehicle noise volume, measurement distance, a form and size of the hall using the base concrete block, the use of special concrete base showed a good alternative solution for decreasing traffic noise level, from 4 dB to 9 dB.