• 제목/요약/키워드: tire pressure

검색결과 191건 처리시간 0.022초

타이어 공명 소음 저감체 개발 (Tire Cavity Noise Reducing Material Development)

  • 이상주;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

A Numerical Simulation of a Multi-phase Flow mixed with Air and Water around an Automobile Tire

  • 우종식;김항우
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.101-107
    • /
    • 1998
  • A three-dimensional multi-phase flow is simulated around a smooth tire. This simulation is conducted by solving Navier-Stokes equation with a k-$\varepsilon$ turbulent model. The numerical calculations are carried out by modeling a multi-phase free surface flow mixed with air and water at the inlet. The numerical solutions show an intuitively resonable behavior of water around a moving tire. The calculated pressure around the tire surface along the moving direction is presented. The moving velocities of the tire are chosen to be 30, 40, 60, and 70 km/h. The numerically simulated pressures around the tire are compared with existing experimental data. The comparison shows a new possible tool of analyzing a hydroplaning phenomenon for an automobile tire by means of a computational fluid dynamics.

  • PDF

공기 기인 소음 분석과 음향 인텐시티법을 이용한 타이어에 의한 실내 소음 예측 (Prediction of Interior Noise Caused by Tire Based on Sound Intensity and Acoustic Source Quantification)

  • 신광수;이상권;황성욱
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.315-323
    • /
    • 2013
  • Tire noise is divided into a road noise(structure-borne noise) and a pattern noise(air-borne noise). Whilst the road noise is caused by the structural vibration of the components on the transfer path from tire to car body, the pattern noise is generated by the air-pumping between tire and road. In this paper, a practical method to estimate the pattern noise inside a passenger car is proposed. The method is developed based on the sound intensity and airborne source quantification. Sound intensity is used for identifying the noise sources of tire. Airborne source quantification is used for estimating the sound pressure level generated by each noise source of a tire. In order to apply the airborne source quantification to the estimation of the sound pressure, the volume velocity of each source should be obtained. It is obtained by using metrics inverse method. The proposed method is successfully applied to the evaluation of the interior noises generated by four types of tires with different pattern each other.

Auxetic Spoke로 설계된 비공기압 타이어의 접지압 (Contact Pressure of Non-Pneumatic Tires with Auxetic spokes)

  • 김광원;김두만
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.719-724
    • /
    • 2011
  • 비공기압 타이어(Non-Pneumatic tire)는 공기압 타이어와는 다르게 스포크(Spoke)로 공기압의 역할을 담당하는 새로운 타이어이다. 이 타이어는 공기압 타이어의 펑크에 대한 위험과 공기압 유지가 필요 없는 장접을 가졌으며, 공기가 존재하지 않는 우주에서도 사용이 가능하다. 본 연구에서는 음의 각으로 이뤄진 허니컴 구조의 비공기압 타이어를 수직 하중에 따른 접지압을 구하여, 이를 공기압 타이어와 비교하였다.

Ball형 측정기를 이용한 토중 응력 상태의 계측 (Soil Stress State Determination Using a Ball-type Transducer)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • 제29권4호
    • /
    • pp.301-306
    • /
    • 2004
  • Soil stresses were measured beneath the centerline of one new 12.4R28 radial-ply tractor tire. The tire was operated with three inflation pressures(59㎪ 108㎪ and 157㎪) and a dynamic load of 14.2 kN and 20% slip. Soil stress state transducer(SST) measured the stresses in a hardpan soil profile. The depth of the SST was 250mm from soil surface. Analysis of the original soil stress data showed that the inflation pressure of tire did significantly affect the vertical stress. The major principal stresses calculated were more when the inflation pressure was 108㎪ than when it was 157㎪. The peak stresses of the major principal stresses presented more than those of the vertical stresses.

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

타이어 패턴 소음에 대한 고찰 (The study on tire Pattern Noise)

  • 황성욱;방명제;노국희;조춘택
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.340-343
    • /
    • 2006
  • As the needs of consumer on ride comforts increase and the reduction of road traffic noise tightened step by step, the power unit noise emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power-train when vehicles are driven at high speeds. Therefore, in these days, tire/pavement noise is concerned. Tire/pavement noise is affected by pavement type and vehicle???s transmission loss. Tire noise mechanism is produced by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, on smooth asphalt the periodicity of tread design, pitch sequence is important factor, which have an influence on the reduction of tire noise.

  • PDF

Beamforming을 이용한 TPMS 간섭제거 (TPMS Interference Suppression Based on Beamforming)

  • 황석승;김성민;박철
    • 한국전자통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.180-185
    • /
    • 2011
  • TPMS(Tire Pressure Monitoring System)는 차량의 주행 또는 정차시 타이어의 압력 또는 온도 등에 따른 이상 유무를 측정하여 수신기의 표시장치에 해당 상황을 나타내주도록 설계된 안전 보조 시스템이다. TPMS의 센서부에서 측정한 데이터를 자동차 내부의 신호처리부로 무선통신을 이용하여 전송하는데, 통신 시에 다양한 간섭으로 인한 통신 장애가 발생할 수 있다. 대표적인 TPMS 간섭으로 아마추어 무선국, 컨테이너 관리용 RFID(Radio-Frequency IDentification), RKE(Remote Keyless Entry) 신호 등을 들 수 있다. 이러한 다양하면서도 높은 전력을 가지는 간섭들을 제거하기 위하여 본 논문에서는 빔형성(Beamforming) 기술을 고려한다. 이에 따른 데이터 구조 및 빔형성기에 알맞는 차량내부의 안테나 배치 등을 제안한다. 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안된 기술의 간섭제거 성능을 확인 할 것이다.

트레드 패턴을 고려한 타이어의 스탠딩 웨이브 현상에 대한 유한 요소 해석 (Finite Element Analysis on Standing Wave Phenomenon of a Tire Considering Tread Pattern)

  • 김기운;정현성
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.76-83
    • /
    • 2006
  • Each tire has a critical speed at which a standing wave phenomenon occurs along the circumferential direction. If the standing waves are formed, the tire temperature is rapidly increased and it leads to tire failure eventually. As the formation of the standing waves is closely related to the tire stiffness, the effect of the tread pattern needs to be studied numerically. The standing wave phenomenon of a tire model with tread pattern is predicted by an explicit finite element method. The critical speed of the tire with tread pattern is in a good agreement with the experiment and is $15{\sim}20\;km/h$ lower than that of the tire without tread pattern. The effects of the inflation pressure and the vertical load on the critical speed are also investigated by using the tire model with tread pattern.