• Title/Summary/Keyword: tire pressure

Search Result 191, Processing Time 0.025 seconds

The use of the semi-empirical method to establish a damping model for tire-soil system

  • Cuong, Do Minh;Ngoc, Nguyen Thi;Ran, Ma;Sihong, Zhu
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.395-406
    • /
    • 2018
  • This paper proposes a linear damping model of tire-soil system using semi-empirical method. A test rig was designed and developed to measure the vertical equivalent linear damping ratio of tire only and tire-soil system using Free-Vibration Logarithmic Decay Method. The test was performed with two kinds of tractor tires using a combination of five inflation pressure levels, two soil depths and four soil moisture contents in the paddy soil. The results revealed that the linear damping ratio of tires increased with decreasing tire inflation pressure; the linear damping ratio of tire-soil system also increased with decreasing tire inflation pressure and increased with the increasing soil depth (observed at 80 and 120 mm). It also increased with a relative increase of soil moisture contents (observed at 37.9%, 48.8%, 66.7% and 77.4%). The results also indicated that the damping ratio of tire-soil system was higher than that of tire only. A linear damping model of tire-soil system is proposed as a damping model in parallel which is established based on experimental results and vibration theory. This model will have a great significance in study of tractor vibration.

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

Contact Pressure of Non-Pneumatic Tires with Auxetic Honeycomb Spoke (음의 각을 가지는 허니컴 스포크를 사용한 비 공압타이어의 접지압 분포)

  • Kim, Kwangwon;Kim, Dooman
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • An airless tire has advantages over the conventional pneumatic tire in terms of flat proof and maintenance free. According to the recently disclosed inventions on the airless tire, non-pneumatic tire (NPT) consists of the flexible polygon spokes. Considering the NPT structure, the spokes undergo the tension-compression cyclic loading while the tire rolls. Therefore the spokes of NPT are required to have both stiffness and resilience under the cyclic tensile-compressible loading. In general, if a material has a high stiffness, it shows a low elastic strain limit. In this paper, using the auxetic honeycomb structure with negative poissons's ratio, the spokes of NPT tire are designed to have both stiffness and resilience. Finite element based numerical simulation of the contact pressure of a NPT is carried out with ABAQUS.

  • PDF

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Analysis of Vehicle Noise Effect by Microphone Position and Road Geometry (도로 기하구조에 따른 차량 Microphone 위치별 소음 영향 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: The purpose of study is to understand the characteristic of driving noise from the front and rear tire for effective active noise cancellation application. METHODS : As literature review, noise measurement methods were reviewed. Noise measurement conducted at three kind of section by road slope using CPX(Close Proximity Method). Noise data was compared by total sound pressure level and 1/3 octave band frequency sound pressure level. Also, each section was compared by T-test using SPSS. RESULTS : In the case of the uphill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low and high frequency band. In the case of high slope section of Sangsaek-Ri, the sound pressure level of the front tire was higher than that of the rear tire in high frequency. Also, in the case of the downhill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low frequency band. However, the sound pressure levels of both the front and rear tires were approximately the same in the high slope section of Sangsaek-Ri. The result of T-test showed that total sound pressures of the front and rear tires were not different from each other in the case of high slope and high speed. CONCLUSIONS: Road slope was not an important variable for effective active noise cancellation.

Effects of Tire Pressure on Biceps Brachii and Triceps Brachii Activity When Operating a Manual Wheelchair

  • Lee, Sang-Yeol;Lee, Su-Kyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.3
    • /
    • pp.55-58
    • /
    • 2016
  • PURPOSE: This study was measured the differences in the flexor and extensor muscle activities of the elbow joints based on the tire pressure of wheelchairs during propulsion, investigating the optimal tire pressure for improving occupants' propulsion and avoiding related injury. METHODS: Ten healthy volunteers (10 men aged $23.1{\pm}1.9years$, weight: $67.9{\pm}3.4kg$, height: $175.1{\pm}2.7cm$) took part in the study. The mean values used in the statistical process were obtained from values measured while a subject sitting on a wheelchair propelled himself forward for 10 meters on a flat floor at maximum speed. The tire pressure of the wheelchairs was set at 100 psi, 50 psi, and 25 psi. All of the subjects performed wheelchair propulsion for each pressure. This study was measured the activation of the biceps brachii and triceps brachii muscles on the dominant side during wheelchair propulsion. The measured data was analyzed using one-way analysis of variance (ANOVA) via the statistical package for the social sciences (SPSS) version 12.0 for Windows to compare the muscle activity. RESULTS: The muscle activities of the biceps brachii and triceps brachii were significant differences between each pressure group. The post hoc test found statistically significant differences between 100 psi and 50 psi and 100 psi and 25 psi for the biceps brachii and triceps brachii muscles, respectively. CONCLUSION: The maintaining proper tire pressure in a wheelchair may help to prevent overuse syndrome in the occupant's elbow joints.

The Effect of Ground Condition, Tire Inflation Pressure and Axle Load on Steering Torque (노면상태, 타이어 공기압 및 축하중이 조향력에 미치는 영향)

  • Park W. Y.;Kim S. Y.;Lee C. H.;Choi D. M;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.419-424
    • /
    • 2004
  • In this study, a series of soil bin experiment was carried out to investigate experimentally the effect of the tire inflation pressure and axle load of tire on the steering torque for the off-road condition. The experiment was performed at the three levels of off-road conditions(ground I, ground II and ground III) and on-road condition(ground IV), four levels of tire inflation pressure(120 kPa, 170 kPa, 220 kPa and 270 kPa), and four levels of axle load(1470N, 1960N, 2450N and 2940N). The results of this study are summarized as follows: 1. Steering torque at the off-road conditions were higher than that on the on-road conditions for all levels of tire inflation pressure and axle load. 2. As the axle load increased, steering torque also increased f3r all experimental ground conditions. 3. For the axle load of 1470N the biggest steering torque was measured on the ground condition I, but as the axle load increased to the value of 2940N the biggest steering torque was measured on the ground condition III. From the above results, it was found that for the low axle load, steering torque gets higher on the soft ground condition, but for the high axle load, steering torque gets higher on hard ground condition for whole range of experimental conditions. 4. As the tire inflation pressure decreased, steering torque increased on the on-road condition, but no specific trend was not found at the off-road conditions.

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.

An Experimental Study on Sound Radiation Characteristics of Radial Tire for a Passenger Car Due to Excitation (가진에 의한 승용차 타이어의 음향방사특성에 관한 실험적 연구)

  • 김병삼;이태근;홍동표
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2426-2436
    • /
    • 1993
  • Vibration characteristics of a tire play an important role to judge a ride conformability and sound quality for a passenger car. In this study, the experimental investigation for the sound radiation of a radial tire has been examined. Based on the sound intensity techniques, the sound pressure field and the sound radiation are measured. It turns out that air pressure in tire, tread patterns, and aspect ratio of the tire govern the sound radiation characteristics. Then a numerical analysis for the tire element is conducted. During analysis, the tire element is modelled as an elastic ring. The comparison shows that the numerical output correlates to the experimental data.