• Title/Summary/Keyword: tire force

검색결과 166건 처리시간 0.035초

폐타이어 입자혼입 콘크리트의 강도별 특성 실험 (Experimental Study on the Strength of Concrete Specimens Mixed with Tire Chips)

  • 손기상
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.84-90
    • /
    • 2005
  • This study is to use results of the experiment on the influence to the strength by mixing powders of wasted tires into regular remicon within a range of little effectiveness in durability, applicability, economic aspect, and workability, to put it to practical use and to apply as basic data from a view of recycling wasted tires as construction materials. And the concrete, which was mixed with 10mm particles with ratio of $0.5\%\;and\;1.0\%$ respectively at 270 of mixing strength, was reduced by $27\%$ in compressive strength compared to normal concrete, whereas concrete mixed with other than 10mm particles showed lower decrease ratio compared to the former by reducing only $1.0\%\~1.5\%$. it is found that as strength increases, the less in quantity of aggregate and the more increase in quantity of cement. When considered to the above result, it is estimated that concrete mixed with wasted tire particles could be better used in conditions of compressive force rather than tensile force, and could also be used for structures with flexural strengths as well. In conclusion, higher strengths could be made using waste tire mix.

차량에서 실시간 동반경 및 슬립율 측정 (The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle)

  • 이동규;박진일;이종화
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복;권오영
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구 (A Experimental study on natural frequency measurement of passenger car tire under the load and rotation)

  • 김병삼;홍동표;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

시간영역에서 ISSC TLP의 비선형 응답 특성 (Nonlinear Response Characteristics of the ISSC TLP in Time Domain)

  • 이창호
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

승용차 타이어의 진동 특성에 관한 연구 (A study on the vibration characteristics of pssenger car radial tire)

  • 김병삼;이태근;양성모;정태진
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.76-83
    • /
    • 1993
  • The vibration characteristics of radial tire are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tielking method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure are determined experimentally by using the transfer function method. Results show that material property and wear are parameter for shifting of natural frequency and damping.

  • PDF

To Study the Effect on Concrete Strength by Adding Waste Rubber Material from Worn Out Tires

  • Aleem, Muhammad;Ejaz, Naeem;Janjua, Nasir Sadiq;Gill, Tanveer;Sadiq, Muhammad Yasir
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.694-701
    • /
    • 2022
  • This paper introduces a study of concrete structures with a broken tire and a flat tire as a complete overhaul. The materials used to make concrete in this study are solid aggregate, cement, sand, flat tire, broken wheel, drinking water, and Ordinary Portland Cement. A total of 6 main compounds were thrown into solid cylinders and replaced by 0% as a controller followed by 5% and 10%. The cylinder pressure test of the concrete is done by applying the same pressure to the cylinders until a failure occurs. The results of the pressure test show that by applying 5% aggregation the pressure decreases. In Crumb wheel joints, the compression force decreases constantly as the percentage change increases. Therefore, the crumb wheel is not recommended for use as a complete replacement due to its compressive church power.

  • PDF

타이어 접지폭을 고려한 3차원 차량모델에 의한 동적 차륜하중에 관한 연구 (A Study on the Dynamic Wheel Loads of 3-D Vehicle Model Considering Tire Enveloping)

  • 정태주
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.95-104
    • /
    • 2002
  • 본 연구에서는 타이어의 접지폭을 고려한 새로운 3차원 차량모델을 개발하여 차량의 동적하중에 대하여 연구하였다. 3차원 차량모델에는 타이어의 접지폭과 텐덤 스프링 차륜축의 피칭을 고려하여 대형차량인 2축 차량과 3축 차량을 각각 7-자유도와 8-자유도로 모델링 하였다. 차량의 운동방정식은 Lagrange 방정식을 사용하여 유도하였으며 IMSL에 내장되어 있는 5차 Runge-Kutter 방법을 사용하여 해를 계산하였다. 본 3차원 차량모델을 이용하여 수치해석한 결과와 Whittemore 등이 실시한 실험값을 비교 검토하여 그 타당성을 입증하였다. 수치해석으로 구한 결과는 실험값과 매우 잘 일치하였다. 차량의 동적 해석에서는 2축 차량인 8톤 덤프트럭과 3축 차량인 15톤 덤프트럭이 스탭 범프를 통과할 때와 여러 가지 종류의 도로를 1.0 km 주행하는 동안 발생하는 타이어력의 최대 충격계수를 구하였다.

An Improved Friction Model and Its Implications for the Slip, the Frictional Energy, and the Cornering Force and Moment of Tires

  • Park, K.S.;Oh, C.W.;Kim, T.W.;Jeong, Hyun-Yong;Kim, Y.H.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1399-1409
    • /
    • 2006
  • An improved friction model was proposed with consideration of the effect of the sliding speed, the contact pressure and the temperature, and it was implemented into a user subroutine of a commercial FEM code, ABAQUS/Explicit. Then, a smooth tire was simulated for free rolling, driving, braking and cornering situations using the improved friction model and the Coulomb friction model, and the effect of the friction models on the slip, the frictional energy distribution and the cornering force and moment was analyzed. For the free rolling, the driving and the braking situations, the improved friction model and the Coulomb friction model resulted in similar profiles of the slip and the frictional energy distributions although the magnitudes were different. The slips obtained from the simulations were in a good correlation with experimental data. For the cornering situation, the Coulomb friction model with the coefficient of friction of 1 or 2 resulted in lower or higher cornering forces and moments than experimental data. In addition, in contrast to experimental data it did not result in a maximum cornering force and a decrease of the cornering moment for the increase of the speed. However, the improved friction model resulted in similar cornering forces and moments to experimental data, and it resulted in a maximum cornering force and a decrease of the cornering moment for the increase of the speed, showing a good correlation with experimental data.

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • 제3권2호
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.