• Title/Summary/Keyword: tip velocity

Search Result 458, Processing Time 0.029 seconds

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

Effects of the 1975 Haicheng Earthquake on the Korean Peninsula (1975년에 발생한 중국 해성지진이 한반도에 미친 영향)

  • 추교승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.210-221
    • /
    • 1998
  • In the period from the year 1500 to 1980. at least 14 large earthquake with epicenters in the northeastern China and Yellow Sea were felt or destructive in the Korean Peninsula. The most sigmificant events among them were the 1668 July 25 Tancheng earthquake of mamnitude 8.5, and the 1975 Feb. 4 Haicheng earthquake of magnitude 7.3. The Haicheng earthquake of the year 1975 in am extraordinary one among those occurred in the northeastern China in the 20th century in the sense the Shake of the event affected all over the Korean Peninsula. The tremor was felt even at the southeastern tip of the Korea and northern part of Kyushu 700km far away from the epicenter. In order to see the variation and trend of the effect of the Haicheng earthquake on the Korean Peninsula, the two data sets of the northern and southern parts of the peninsula were merged into one combined data set. The spatial variation of intensity shows smooth decrease from the value 4 of the northwestern region near the source to the value 1 of the Cheju Island and Kjushu. However, there are four regions of locally high intensity value. They are the region along downstream of Abrok(Yalu) River with intensity 5, the region around Shinpo of intensity 4, the area comprising Seoul and Chuncheon Cities of intensity 4, and Pohang-Pusan area of intensity 3. We suppose that there might be three types of possible mechanisms. The first one is concerned with the lateral inhomogeneity of velocity in the crust caused by wide distribution of relatively fractured rock. The second one is related with reflections of surface waves caused by the crestal thinning effect at border regions of the Peninsular in contact with the Ulleung Basin and the Japan Basin. The third possibility is local site effect caused by thick Tertiary or Quaternary rocks and soil layers.

  • PDF

Effect of injection pressure on the atomization characteristics of a liquid sheet-type swirl injector for Urea-SCR system (Urea-SCR시스템 액막형 선회분사기의 분사압력변화에 따른 무특성에 관한 연구)

  • Kim, Duckjin;Yang, Donguk;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.510-519
    • /
    • 2013
  • In this study, the spray characteristics of a pressure swirl atomizer classified into a liquid sheet-type swirl nozzle for Urea-SCR system were investigated experimentally with the variation of injection pressure. The length to diameter ratio ($l_o/d$) of the nozzle was 3.1, and the swirler was set inside the nozzle tip to give injecting fluid angular momentum. The injection duration of the nozzle was controlled by PWM (pulse width modulation) modes. The development processes of the spray were imaged by a 2-D PIV system, and the change of spray angle was measured. The atomization characteristics, including axial velocity and SMD, were measured using a 2-D PDA system with the injection pressures at room temperature and ambient pressure conditions. As the experimental results, the injection pressure had a significant impact on the spray structure showing a different shape around the spray leading edge, and the smaller SMD was observed with increasing injection pressures, which was similar to that of the previous work.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

Effect of Reaction Factors on the Properties of Complex Oxide Powder Produced by Spray Roasting Process (분무배소법에 의해 생성되는 복합산화물 분말들의 특성에 미치는 반응인자들의 영향)

  • 유재근;이성수;박희범;안주삼;남용현;손진군
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.16-27
    • /
    • 2000
  • In order to produce raw material powder of advanced magnetic material by spray roasting process, newly modified spray roasting system was developed in this work. In this spray roasting system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, uniform temperature distribution inside reaction furnace made thermal decomposition process fully completed, and produced powder was effectively collected in cyclone and bag filter. This system equipped with apparatus which can purify hazard produced gas. In this study complex acid solution was prepared by dissolution of mill scale and ferro-Mn into the acid solution, and the pH of this complex acid solution was controlled about to 4. It was conformed that mill scale and ferro-Mn containing a lot of impurities such as $SiO_2$, P and Al could be used as raw material by reducing the impurities content of complex acid solution below 20 ppm. Complex oxide powder of Fe-Mn system was produced by spraying purified complex acid solution into the spray roaster through nozzle, and the variations of produced powder characters were studied by changing he reaction conditions such as reaction temperature, the injection velocity of solution and air, nozzle tip size and concentration of solution. The morphology of produced powder had spherical shape under the most experimental conditions, and concentration of solution. The morphology of produced powder has spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform, which tells the excellence of this spray roasting system. The grain size of most produced powder was below 100 nm. From the above results, it will be possible to produce ultra fine oxide powder from the chloride of Fe, Mn, Ni, Cu and rare earth by using this spray roasting system, and also to produce ultra fine pure metal powder by changing reaction atmosphere.

  • PDF

Role of the Vestibular and Medullary Reticular Neuclei for the Motor Evoked Potentials in Rats (흰쥐의 운동유발전위에 대한 전정신경핵과 연수망상핵의 역할)

  • Lee, Moon-Young;Lee, Sung-Ho;Kim, Jae-Hyo;Park, Byung-Rim;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.603-611
    • /
    • 1997
  • The motor evoked potentials (MEPs) have been advocated as a method of monitoring the integrity of spinal efferent pathways in various injury models of the central nervous system. However, there were many disputes about origin sites of MEPs generated by transcranial electrical stimulation. The purpose of present study was to investigate the effect of major extrapyramidal motor nuclei such as lateral vestibular nucleus (VN) and medullary reticular nucleus (mRTN) on any components of the MEPs in adult Sprague-Dalwey rats. MEPs were evoked by electrical stimulation of the right sensorimotor cortex through a stainless steel screw with 0.5mm in diameter, and recorded epidurally at T9 - T10 spinal cord levels by using a pair of teflon-coated stainless steel wire electrodes with 1mm exposed tip. In order to inject lidocaine and make a lesion, insulated long dental needle with noninsulated tips were placed stareotoxically in VN and mRTN. Lidocaine of $2{\sim}3\;{\mu}l$ was injected into either VN or mRTN. The normal MEPs were composed of typical four reproducible waves; P1, P2, P3, P4. The first wave (P1) was shown at a mean latency of 1.2 ms, corresponding to a conduction velocity of 67.5 m/sec. The latencies of MEPs were shortened and the amplitudes were increased as stimulus intensity was increased. The amplitudes of P1 and P2 were more decreased among 4 waves of MEPs after lidocaine microinjection into mRTN. Especially, the amplitude of P1 was decreased by 50% after lidocaine microinjection into bilateral mRTN. On the other hand, lidocaine microinjection into VN reduced the amplitudes of P3 and P4 than other MEP waves. However, the latencies of MEPs were not changed by lidocaine microinjection into either VN or mRTN. These results suggest that the vestibular and reticular nuclei contribute to partially different role in generation of MEPs elicited by transcranial electrical stimulation.

  • PDF

Development of Hydrodynamic Capacity Evaluation Method for a Vertical-Axis Tidal Stream Turbine (수직축 조류발전 터빈의 유체공학적 용량 산정기법 개발)

  • Lee, D.H;Hyun, B.S.;Lee, J.K.;Kim, M.C.;Rhee, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • This study deals with the investigation of the scale effect for the vertical-axis tidal stream turbine by evaluating the hydrodynamic efficiency of turbine rotors of different diameters at different flow conditions. Numerical analyses are made for the turbine rotors with a same shape, but different sizes obtained using the diameter evaluation equation suggested in this paper. It is shown that the performance of turbine is clearly dependent upon the rotor size and inflow velocity, i.e. Reynolds number dependency of different-scaled turbines showing better efficiency with increasing Reynolds number. The sudden decrease of efficiency is also noticed around the transition region of Reynolds number. The hydrodynamic capacity evaluation method needed at initial stage of turbine design is suggested and exercised with some test cases. It is recommended that the method is expected to be useful for turbines with demanding powers between 10 kW and 300 kW.