• Title/Summary/Keyword: tin oxide nanoparticle

Search Result 41, Processing Time 0.025 seconds

Binder-free Sn/Graphene Nanocomposites Prepared by Electrophoretic Deposition for Anode Materials in Lithium Ion Batteries

  • Bae, Eun Gyoung;Hwang, Yun-Hwa;Pyo, Myoungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1199-1204
    • /
    • 2013
  • Nanocomposites consisting of Sn nanoparticles and graphene oxide (GO) were electrophoretically deposited onto Cu current collectors that was used for anodes in Li ion batteries (LIBs). In order to optimize the electrochemical performance of nanocomposites as an anode material by controlling the oxygen functionality, the GO was subjected to $O_3$ treatment prior to electrophoretic deposition (EPD). During thermal reduction of the GO in the nanocomposites, the Sn nanoparticles were reduced in size, along with the formation of SnO and/or $SnO_2$ at a small fraction, relying on the oxygen functionalities of the GO. The variation in the duration of time for the $O_3$ irradiation resulted in a small change in total oxygen content, but in a significantly different fraction of each functional group in the GO, which influenced the Sn nanoparticle size and the amount of SnO (and/or $SnO_2$). As a result, the EPD films prepared with the GO that possessed the least amount of carboxylic groups (made by treating GO in an $O_3$ environment for 3 h) showed the best performance, when compared with the nanocomposites composed of untreated GO or GO that was $O_3$-treated for a duration of less than 3 h.

Tin-Based Nanoparticles Prepared by a Wet Chemical Synthesis using Green Reducing and Capping Agents (화학적 습식 합성법에서 친환경 슈거 환원제 및 젤라틴 캡핑제에 의한 주석계 나노입자의 제조)

  • Chee, Sang-Soo;Yun, Young-En;You, Eun-Sun;Park, Sang-Hyun;Park, Sung-Young;Lee, Seok-Hee;Park, In-Seon;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • In the synthesis of nanoparticles (NPs) via wet chemical reduction using tin(II) acetate precursor, the effects of green reducing agents (sugar) and a capping agent (gelatin) on the formation of NPs were analyzed as functions of synthesis conditions and time. When glucose was used as the reducing agent, it was observed that irregular chainlike shapes, aggregates of NPs, were formed during the synthesis at $70-110^{\circ}C$. The NPs were determined as $SnO_2$ from the fast Fourier transform (FFT) pattern. In the synthesis at $110^{\circ}C$ by using sucrose, fine spherical NPs of ~10 nm in diameter were formed after the synthesis time of 3 h. As the time increased to 9 h, the chainlike NP aggregates besides irregularly aggregated spherical NPs were also formed locally. However, the chainlike NP aggregates were only observed when the synthesis was conducted at $130^{\circ}C$. The spherical NPs and chainlike NP aggregates were analyzed to be pure Sn and $SnO_2$, respectively.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Effect of the TiO2 Nanotubes in the Photoelectrode on Efficiency of Dye-sensitized Solar Cell

  • Rahman, Md. Mahbubur;Son, Hyun-Seok;Lim, Sung-Su;Chung, Kyung-Ho;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.110-115
    • /
    • 2011
  • The effect of $TiO_2$ nanotube (TNT) and nanoparticle (TNP) composite photoelectrode and the role of TNT to enhance the photo conversion efficiency in dye-sensitized solar cell (DSSC) have investigated in this study. Results demonstrated that the increase of the TNT content (1-15 %) into the electron collecting TNP film increases the open-circuit potential ($V_{oc}$) and short circuit current density ($J_{sc}$). Based on the impedance analysis, the increased $V_{oc}$ was attributed to the suppressed recombination between electrode and electrolyte or dye. Photochemical analysis revealed that the increased Jsc with the increased TNT content was due to the scattering effect and the reduced electron diffusion path of TNT. The highest $J_{sc}$ (12.6 mA/$cm^2$), Voc (711 mV) and conversion efficiency (5.9%) were obtained in the composite photoelectrode with 15% TNT. However, $J_{sc}$ and $V_{oc}$ was decreased for the case of 20% TNT, which results from the significant reduction of adsorbed dye amount and the poor attachment of the film on the fluorine-doped tin oxide (FTO). Therefore, application of this composite photoelectrode is expected to be a promising approach to improve the energy conversion efficiency of DSSC.

Transparent Conductive Single-Walled Carbon Nanotube Films Manufactured by adding carbon nanoparticles

  • Lee, Seung-Ho;Kim, Myoung-Soo;Goak, Jung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.417-417
    • /
    • 2009
  • Although a transparent conductive film (TCF) belongs to essential supporting materials for many device applications such as touch screens, flat panel displays, and sensors, a conventional transparent conductive material, indium-tin oxide (ITO), suffers from considerable drawback because the price of indium has soared since 2001. Despite a recent falloff, a demand of ITO is expected to increase sharply in the future due to the trend of flat panel display technologies toward flexible, paper-like features. There have been recently extensive studies to replace ITO with new materials, in particular, carbon nanotubes (CNTs) since CNTs possess excellent properties such as flexibility, electrical conductivity, optical transparency, mechanical strength, etc., which are prerequisite to TCFs. This study fabricated TCFs with single-walled carbon nanotubes (SWCNTs) produced by arc discharge. The SWCNTs were dispersed in water with a surfactant of sodium dodecyl benzene sulfonate (NaDDBS) under sonication. Carbon black and fullerene nanoparticles were added to the SWCNT-dispersed solution to enhance contact resistance between CNTs. TCFs were manufactured by a filtration and transfer method. TCFs added with carbon black and fullerene nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy (optical transmittance), and four-point probe measurement (sheet resistance).

  • PDF

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • Zeferino, Raul Sanchez;Pal, Umapada;Reues, Ma Eunice De Anda;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

Electrocatalytic alcohol oxidation on Pt/ATO nanoparticle (ATO nanoparticle에 담지된 백금 촉매의 전기화학적 알콜 산화 반응에 관한 연구)

  • Lee, Kug-Seung;Park, In-Su;Jung, Dae-Sik;Park, Hee-Young;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.463-466
    • /
    • 2006
  • 직접 알콜 연료전지는 액체인 알콜을 직접 연료전지에 공급하여 연소시킴으로써 높은 효율을 갖는 휴대용전원으로 주목받는 장치이다. 직접 알콜 연료전지에 담지체로 사용되는 탄소 소재는 넓은 표면적과 우수한 전기전도도를 가지고 있다는 장점 있으나 금속 촉매와의 상호작용이 약하여 촉매 활성에 영향을 주지 못한다. 산화물을 담지체로 사용할 경우 이러한 금속-담지체 간의 상호작용으로 인한 촉매활성 증가 및 입자성장 억제의 효과를 기대할 수 있다. 본 연구에서는, 안티몬 도핑된 주석산화물 (Sb-doped SnO2 : ATO nanoparticle)을 직접 메탄올 연료전지용 담지체어 적용하였으며 합성 과정은 다음과 같다. SnC14 5H2O SbC13, NaOH, HCl 수용액 혼합물을 삼구 플라스크에 넣고 $100^{\circ}C$ 온도에서 환류(reflux) 시킨 후 세척 및 건조하여 Air 분위기에서 열처리하였다. 합성된 산화물 수용액에 폴리올 방법으로 합성된 백금 콜로이드를 담지하였으며, 세척과 건조를 통하여 산화물에 담지된 백금 촉매를 촉매를 합성하였다. 촉매의 구조분석을 위해 XRD, TEM을 사용하였으며, 전극촉매로서의 활성을 평가하기 위해 cyclic voltammetry을 평가하였다. 본 연구에서는 백금의 담지량에 따른 Costripping voltammetry특성과 메탄올 및 에탄올 산화 반응 특성에 대하여, 탄소를 담지체로 사용한 Pt/C 촉매와 비교 평가하였다. 알콜 산화반응 평가결과, 주석산화물에 담지한 촉매가 탄소를 담지체로 사용한 촉매보다 우수한 활성을 나타내었으며 활성증가는 메탄올에 비해 에탄올 산화 반응의 경우 크게 증가하였다. 막과 비교해 보았다. $ZrO_2$ 입자는 전도성이며 동시에 친수성을 나타내기 때문에 상용 막에 비하여 함수율 및 수소이온 전도도가 우수하게 나타났다. 복합막의 이러한 물성은 $100^{\circ}C$이상의 고온에서 전해질 막 내의 물 관리를 용이하게 한다. 단위 전지 운전 온도 $130^{\circ}C$, 상대습도 37%의 운전 조건에서도 상당히 우수한 전지 성능을 보임에 따라 고온/저가습 조건에서 상용 Nafion 112 막보다 우수한 막 특성을 나타냄을 확인하였다.소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$<

  • PDF

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide (안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구)

  • Lee, Kug-Seung;Park, Hee-Young;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

Coloration and Chemical Stability of SiO2 and SnO2 Coated Blue CoAl2O4 Pigment (SiO2, SnO2 코팅된 청색 CoAl2O4 안료의 색상, 물성 평가 연구)

  • Yun, JiYeon;Yu, Ri;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.377-381
    • /
    • 2014
  • This work describes the coloration, chemical stability of $SiO_2$ and $SnO_2$-coated blue $CoAl_2O_4$ pigment. The $CoAl_2O_4$, raw materials, were synthesized by a co-precipitation method and coated with silica ($SiO_2$) and tin oxide ($SnO_2$) using sol-gel method, respectively. To study phase and coloration of $CoAl_2O_4$, we prepared nano sized $CoAl_2O_4$ pigments which were coated $SiO_2$ and $SnO_2$ using tetraethylorthosilicate, $Na_2SiO_3$ and $Na_2SiO_3$ as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue $CoAl_2O_4$ solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of $SiO_2$ and $SnO_2$-coated $CoAl_2O_4$ solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type $CoAl_2O_4$ powders were characterized by transmission electron microscope, X-ray diffraction, CIE $L^*a^*b^*$ color parameter measurements.

Improving Conductivity of Metal Grids by Controlling Sintering Process (배선 함몰 전극의 배선 소결공정 최적화에 따른 전기적 특성 향상)

  • Ahn, Wonmin;Jung, Sunghoon;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.4
    • /
    • pp.158-162
    • /
    • 2015
  • To substitute indium tin oxide (ITO), many substituents have been studied such as metal nanowires, carbon based materials, 2D materials, and conducting polymers. These materials are not good enough to apply to an electrode because theses exhibit relatively high resistance. So metal grids are required as an additionalelectrode to improve the conductivities of substituents. The metal grids were printed by electrohydrodynamic printing system using Ag nanoparticle based ink. The Ag grids showed high uniformity and the line width was about $10{\mu}m$. The Ag nanoparticles are surrounded by dispersants such as unimolecular and polymer to prevent aggregation between Ag nanoparticles. The dispersants lead to low conductivity of Ag grids. Thus, the sintering process of Ag nanoparticles is strongly recommended to remove dispersants and connect each nanoparticles. For sintering process, the interface and microstructure of the Ag grid were controlled in 1.0 torr Ar atmosphere at aound $400^{\circ}C$ of temperature. From the sintering process, the uniformity of the Ag grid was improved and the defects on the Ag grids were reduced. As a result, the resistivity of Ag grid was greatly reduced up to $5.03({\pm}0.10){\times}10^{-6}{\Omega}{\cdot}cm$. The metal grids embedded substrates containing low pressure Ar sintered Ag grids showed 90.4% of transmittance in visible range with $0.43{\Omega}/{\square}$ of sheet resistance.