Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.1.013

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles  

Zeferino, Raul Sanchez (Departamento de Fisica, Universidad de Sonora)
Pal, Umapada (Instituto de Fisica, Universidad Autonoma de Puebla)
Reues, Ma Eunice De Anda (Instituto de Fisica, Universidad Autonoma de Puebla)
Rosas, Efrain Rubio (Centro Universitario de Vinculacion y Transferencia de Tecnologia, Benemerita Universidad Autonoma de Puebla)
Publication Information
Advances in nano research / v.7, no.1, 2019 , pp. 13-24 More about this Journal
Abstract
Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.
Keywords
tin oxide nanoparticle; indium doping; defect structure; photocatalysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Li, W.-T., Zhang, X.-D. and Guo, X. (2017), "Electrospun Nidoped $SnO_2$ nanofiber array for selective sensing of $NO_2$", Sens. Actuat. B: Chem., 244, 509-521.   DOI
2 Liu, L.Z., Wu, X.L., Gao, F., Shen, J.C., Li, T.H. and Chu, P.K. (2011), "Determination of surface oxygen vacancy position in $SnO_2$ nanocrystals by Raman spectroscopy", Solid St. Commun., 151(11), 811-814.   DOI
3 Marban, G., Vu, T.T. and Valdes-Solis, T. (2011), "A simple visible spectrum deconvolution technique to prevent the artefact induced by the hypsochromic shift from masking the concentration of methylene blue in photodegradation experiments", Appl. Catal. A: General, 402, 218-223.   DOI
4 Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U. and Sunkara, M.K. (2009), "Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries", Nano Lett., 9(2), 612-616.   DOI
5 Mondal, S., De Anda Reyes Ma, E. and Pal, U. (2017), "Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light", RSC Adv., 7, 8633-8645.   DOI
6 Peche-Herrero, M.A., Maestre, D., Ramirez-Castellanos, J., Cremades, A., Piqueras, J. and Gonzalez-Calbeta, J.M. (2014), "The controlled transition-metal doping of $SnO_2$ nanoparticles with tunable luminescence", Cryst. Eng. Comm., 16, 2969-2976.   DOI
7 Reddy, C.V., Babu, B. and Shim, J. (2017), "Synthesis of Cr-doped $SnO_2$ quantum dots and its enhanced photocatalytic activity", Mater. Sci. Eng. B, 223, 131-142.   DOI
8 Reddy, C.V., Babu, B., Vattikuti, S.V.P., Ravikumar, R.V.S.S.N. and Shim, J. (2016), "Structural and optical properties of vanadium doped $SnO_2$ nanoparticles with high photocatalytic activities", J. Lumin., 179, 26-34.   DOI
9 Shaalan, N.M., Hamad, D., Abdel-Latief, A.Y. and Abdel-Rahim, M.A. (2016), "Preparation of quantum size of tin oxide: Structural and physical characterization", Prog. Nat. Sci. Mater. Inter., 26(2), 145-151.   DOI
10 Sanchez Zeferino, R., Pal, U., Melendrez, R., Duran-Munoz, H.A. and Barboza Flores, M. (2013), "Dose enhancing behavior of hydrothermally grown Eu-doped $SnO_2$ nanoparticles", J. Appl. Phys., 113, p. 064306.   DOI
11 Shang, G., Wu, J., Huang, M., Lin, J., Lan, Z., Huang, Y. and Fan, L. (2012), "Facile Synthesis of Mesoporous Tin Oxide Spheres and Their Applications in Dye-Sensitized Solar Cells", J. Phys. Chem. C, 116(38), 20140-20145.   DOI
12 Sun, P., Zhou, X., Wang, C., Wang, B., Xu, X. and Lu, G. (2014), "One-step synthesis and gas sensing properties of hierarchical Cd-doped $SnO_2$ nanostructures", Sens. Actuat. B: Chem., 190, 32-39.   DOI
13 Shanmugam, N., Sathya, T., Viruthagiri, G., Kalyanasundaram, C., Gobi, R. and Ragupathy, S. (2016), "Photocatalytic degradation of brilliant green using undoped and Zn doped $SnO_2$ nanoparticles under sunlight irradiation", Appl. Surf. Sci., 360, 283-290.   DOI
14 Shi, W., Song, S. and Zhang, H. (2013), "Hydrothermal synthetic strategies of inorganic semiconducting nanostructures", Chem. Soc. Rev., 42, 5714-5743.   DOI
15 Singh, M.K., Mathpa, M.C. and Agarwal, A. (2012), "Optical properties of $SnO_2$ quantum dots synthesized by laser ablation in liquid", Chem. Phys. Lett., 536, 87-91.   DOI
16 Wager, J.F. (2003), "Transparent electronics", Science, 300, 1245.   DOI
17 Tadeev, A.V., Delabouglise, G. and Labeau, M. (1999), "Sensor properties of Pt doped $SnO_2$ thin films for detecting CO", Thin Solid Films, 337, 163-165.   DOI
18 Teresa, O. (2017), "Effect of Double Schottky Barrier in Gallium-Zinc-Oxide Thin Film", Trans. Electr. Electron. Mater., 18(6), 323-329.   DOI
19 Tran, V.-H., Ambade, R.B., Ambade, S.B., Lee, S.-H. and Lee, I.-H. (2017), "Low-temperature solution-processed $SnO_2$ nanoparticles as a cathode buffer layer for inverted organic solar cells", ACS Appl. Mater. Interfaces, 9, 1645-1653.   DOI
20 Vignesh, K., Hariharan, R., Rajarajan, M. and Suganthi, A. (2013), "Photocatalytic performance of Ag doped $SnO_2$ nanoparticles modified with curcumin", Solid State Sci., 21, 91-99.   DOI
21 Wang, H. and Rogach, A.L. (2014), "Hierarchical $SnO_2$ Nanostructures: Recent Advances in Design, Synthesis, and Applications", Chem. Mater., 26(1), 123-133.   DOI
22 Wang, J.-J., Lv, A.-F., Wang, Y.-Q., Cui, B., Yan, H.-J., Hu, J.-S., Hu, W.-P., Guo, Y.-G. and Wan, L-J. (2013), "Integrated Prototype Nanodevices via $SnO_2$ Nanoparticles Decorated SnSe Nanosheets", Scientific Reports, 3, p. 2613.   DOI
23 Xiang, X., Zu, X.T., Zhu, S., Wang, L.M., Shutthanandan, V., Nachimuthu, P. and Zhang, Y. (2008), "Photoluminescence of $SnO_2$ nanoparticles embedded in $Al_2O_3$", J. Phys. D: Appl. Phys., 41, p. 225102.   DOI
24 Zhou, G., Ni, S., Sun, X., Wang, X., Wang, Q. and He, D. (2011), "Visible photoluminescence of hydrothermal synthesized $Sn_{1-x}Ni_xO_2$ nanostructures", J. Mater. Sci: Mater. Electron., 22, 174-178.   DOI
25 Yanes, A.C., Mendez Ramos, J., del-Castillo, J., Velazquez, J.J. and Rodriguez, V.D. (2010), "Size-dependent luminescence of $Sm^{3+}$ doped $SnO_2$ nano-particles dispersed in sol-gel silica glass", Appl. Phys. B, 101(4), 849-854.   DOI
26 Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N. (2001), "Photooxidative N-demethylation of methylene blue in aqueous $TiO_2$ dispersions under UV irradiation", J. Photochem. Photobiol. A: Chem., 140, 163-172.   DOI
27 Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L. and Liu, R. (2014), "Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods", Sci. Rep., 4, p. 4596.   DOI
28 Zuo, J., Xu, C., Liu, X., Wang, C., Wang, C., Hu, Y. and Qian, Y. (1994), "Study of the Raman spectrum of nanometer $SnO_2$", J. Appl. Phys., 75, 1835-1836.   DOI
29 Ali, A.M., Emanuelsson, E.A.C. and Patterson, D.A. (2011), "Conventional versus lattice photocatalysed reactions: Implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254 nm and 340 nm", Appl. Catal. B: Environ., 106, 323-336.   DOI
30 Anuchai, S., Phanichphant, S., Tantraviwat, D., Pluengphon, P., Bovornratanaraks, T. and Inceesungvorn, B. (2018), "Low temperature preparation of oxygen-deficient tin dioxide nanocrystals and a role of oxygen vacancy in photocatalytic activity improvement", J. Colloid Interf. Sci., 512, 105-114.   DOI
31 Carreno, N.L.V., Fajardo, H.V., Maciel, A.P., Valentini, A., Pontes, F.M., Probst, L.F.D., Leite, E.R. and Longo, E. (2004), "Selective synthesis of vinyl ketone over $SnO_2$ nanoparticle catalysts doped with rare earths", J. Mol. Catal. A: Chem., 207(1), 91-96.   DOI
32 Babu, B., Kadam, A.N., Ravikumar, R.V.S.S.N. and Byon, C. (2017), "Enhanced visible light photocatalytic activity of Cudoped $SnO_2$ quantum dots by solution combustion synthesis", J. Alloys Compd., 703, 330-336.   DOI
33 Bouaine, A., Brihi, N., Schmerber, G., Ulhaq-Bouillet, C., Colis, S. and Dinia, A. (2007), "Structural, Optical, and Magnetic Properties of Co-doped $SnO_2$ Powders Synthesized by the Coprecipitation Technique", J. Phys. Chem. C, 111(7), 2924-2928.   DOI
34 Busca, G. and Lorenlleli, V. (1982), "Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces", Mater. Chem., 7(1), 89-126.   DOI
35 Chen, H., Ding, L., Sun, W., Jiang, Q., Hu, J. and Li, J. (2015), "Synthesis and characterization of Ni doped $SnO_2$ microspheres with enhanced visible-light photocatalytic activity", RSC Adv., 5, 56401-56409.   DOI
36 Cheng, L., Shao, M.-W., Chen, D., Mac, D.D.D. and Lee, S.-T. (2010), "$SnO_2$ nanowires with strong yellow emission and their application in photoswitches", Cryst. Eng. Comm., 12, 1536-1539.   DOI
37 Flores, N.M., Pal, U., Galeazzi, R. and Sandoval, A. (2014), "Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures", RSC Adv., 4, 41099-41110.   DOI
38 Choi, Y.-J., Hwang, I.-S., Park, J.-G., Choi, K.J., Park, J.-H. and Lee, J.-H. (2008), "Novel fabrication of an $SnO_2$ nanowire gas sensor with high sensitivity", Nanotechnol., 19(9), 095508.   DOI
39 Dieguez, A., Romano-Rodriguez, A., Vila, A. and Morante, J.R. (2001), "The complete Raman spectrum of nanometric $SnO_2$ particles", J. Appl. Phys., 90, 1550-1557.   DOI
40 Escobedo Morales, A., Sanchez Mora, E. and Pal, U. (2007), "Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures", Rev. Mex. Fis., S53(5), 18-22.
41 Garcia-Tecedor, M., Maestre, D., Cremades, A. and Piqueras, J. (2016), "Influence of Cr Doping on the Morphology and Luminescence of SnO2 Nanostructures", J. Phys. Chem. C, 120(38), 22028-22034.   DOI
42 Gu, F., Wang, S., Cao, H. and Li, C. (2008), "Synthesis and optical properties of $SnO_2$ nanorods", Nanotechnol., 19(9), 095708.   DOI
43 Guan, Y., Wang, D., Zhou, X., Sun, P., Wang, H., Ma, J. and Lu, G. (2014), "Hydrothermal preparation and gas sensing properties of Zn-doped $SnO_2$ hierarchical architectures", Sens. Actuat. B: Chem., 191, 45-52.   DOI
44 Han, S., Jang, B., Kim, T., Oh, S.M. and Hyeon, T. (2005), "Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes", Adv. Funct. Mater., 15, 1845-1850.   DOI
45 Higler, R. and Sprake, J. (2017), "Doping colloidal bcc crystals - interstitial solids and meta-stable clusters", Sci. Rep., 7, 12634.   DOI
46 Kansal, S.K., Singh, M. and Sud, D. (2007), "Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts", J. Hazard. Mater., 141(3), 581-590.   DOI
47 Horvath, E., Kristof, J., Nasser, H., Frost, R.L., De Basattisti, A. and Redey, A. (2005), "Investigation of $SnO_2$ thin film evolution by thermoanalytical and spectroscopic methods", Appl. Surf. Sci., 242, 13-20.   DOI
48 Huang, H., Tan, O.K., Lee, Y.C., Tran, T.D., Tse, M.S. and Yao, X. (2005), "Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition", Appl. Phys. Lett., 87, p. 163123.   DOI
49 Jean, S.-T. and Her, Y.-C. (2009), "Synthesis of Sb-additivated $SnO_2$ nanostructures and dependence of photoluminescence properties on Sb additivation concentration", J. Appl. Phys., 105, 024310.   DOI
50 Ji, Z., Zhao, L., He, Z., Zhou, Q. and Chen, C. (2006), "Transparent p-type conducting indium-doped $SnO_2$ thin films deposited by spray pyrolysis", Mater. Lett., 60, 1387-1389.   DOI
51 Kou, X., Wang, C., Ding, M., Feng, C., Li, X., Ma, J., Zhang, H., Sun, Y. and Lu, G. (2016), "Synthesis of Co-doped $SnO_2$ nanofibers and their enhanced gas-sensing properties", Sens. Actuat. B: Chem., 236, 425-432.   DOI
52 Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z. and Xin, X. (2002), "One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles", Sens. Actuat. B, 81, 165-169.   DOI