• Title/Summary/Keyword: timothy hay

Search Result 60, Processing Time 0.024 seconds

Relationship Between Nutrient Supply to Muscle and Adipose Tissues and Nitrogen Retention in Growing Wethers on Forage Based Diets Fed with Different Forage Sources

  • Kim, Da Hye;Ichionohe, Toshiyoshi;Choi, Ki Choon;Oda, Shinichi;Hagino, Akihiko;Song, Sang Houn
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.238-244
    • /
    • 2015
  • Three growing wethers were used to investigate the differences in nitrogen (N) retention, blood plasma metabolite concentration and energy-yielding nutrient supply to muscle and adipose tissue. The wethers were fed one of three diets: timothy hay with concentrate (THD), Italian ryegrass with concentrate (IRD), and rice straw with concentrate (RSD) for 11 days. The experimental diets were adjusted to the animals to provide 100 g of daily gain. The triglyceride (TG) concentration of blood plasma in arterial and portal veins was higher with THD and IRD than with RSD. Conversely, the available amount of TG in tissues was higher with IRD. The daily amount of glucose and non-esterified fatty acids (NEFA) supplied to muscle tissue and adipose tissue was numerically higher with THD than IRD or RSD. Although N retention did not differ among the diets, it was numerically higher with THD than with IRD or RSD. The results suggest that the difference in the amount of glucose and NEFA delivered to muscle tissue may reflect the N retention in response to forage based diets.

Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants

  • Lee, Mingyung;Jeong, Sinyong;Seo, Jakyeom;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.92-102
    • /
    • 2019
  • Objective: To investigate changes in rumen fermentation characteristics and bacterial community by a sudden change to a high concentrate diet (HC) in Korean domestic ruminants. Methods: Major Korean domestic ruminants (each of four Hanwoo cows; $545.5{\pm}33.6kg$, Holstein cows; $516.3{\pm}42.7kg$, and Korean native goats; $19.1{\pm}1.4kg$) were used in this experiment. They were housed individually and were fed ad libitum with a same TMR (800 g/kg timothy hay and 200 g/kg concentrate mix) twice daily. After two-week feeding, only the concentrate mix was offered for one week in order to induce rapid rumen acidosis. The rumen fluid was collected from each animals twice (on week 2 and week 3) at 2 h after morning feeding using an oral stomach tube. Each collected rumen fluid was analyzed for pH, volatile fatty acid (VFA), and $NH_3-N$. In addition, differences in microbial community among ruminant species and between normal and an acidosis condition were assessed using two culture-independent 16S polymerase chain reaction (PCR)-based techniques (terminal restriction fragment length polymorphism and quantitative real-time PCR). Results: The HC decreased ruminal pH and altered relative concentrations of ruminal VFA (p<0.01). Total VFA concentration increased in Holstein cows only (p<0.01). Terminal restriction fragment length polymorphism and real-time quantitative PCR analysis using culture-independent 16S PCR-based techniques, revealed rumen bacterial diversity differed by species but not by HC (p<0.01); bacterial diversity was higher in Korean native goats than that in Holstein cows. HC changed the relative populations of rumen bacterial species. Specifically, the abundance of Fibrobacter succinogenes was decreased while Lactobacillus spp. and Megasphaera elsdenii were increased (p<0.01). Conclusion: The HC altered the relative populations, but not diversity, of the ruminal bacterial community, which differed by ruminant species.

Effects of rumen-protected amino acid prototypes on rumen fermentation characteristics in vitro

  • Gyeongjin, Kim;Tabita Dameria, Marbun;Jinhyun, Park;Sang Moo, Lee;Hong Gu, Lee;Jun Ok, Moon;Jin Seung, Park;Eun Joong, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.669-679
    • /
    • 2021
  • This study was conducted to evaluate the effects of rumen-protected amino acid (RPAA) prototypes, which were chemically synthesized, on in vitro rumen fermentation and protection rate outcomes. Several RPAA prototypes were incubated with timothy hay and concentrate. Treatments consisted of 1) control (CON; no RPAA prototype supplement), and prototypes of 2) 0.5% RP-methionine (RPMet), 3) 0.5% RP-tryptophan (RPTrp), 4) 0.5% RP-valine (RPVal), 5) 0.5% RP-phenylalanine (RPPhe), 6) 0.5% RP-leucine (RPLeu), 7) 0.5% RP-histidine (RPHis), 8) 20% RPMet, and 9) 20% RPTrp (w·w-1 feed). The inoculum (50 mL) prepared with rumen fluid and McDougall's buffer (1 : 4) was dispensed in individual serum bottles and was anaerobically incubated for 0, 6, and 24 h at 39℃ in triplicate. The dry matter degradability did not differ among the groups, except for the 20% RPMet and the 20% RPTrp treatments at 6 and 24 h. The total volatile fatty acid concentration in the 20% RPMet was higher (p < 0.05) than the rest of the groups at 6 h, and 20% RPMet showed the highest molar proportion of acetate, whereas the lowest proportion of propionate was found at 6 h (p < 0.05). The protection rate of the RPAA prototypes ranged from 29.85 to 109.21%. at 24 h. In conclusion, the chemically synthesized RPAA prototypes studied here had no detrimental effects on rumen fermentation parameters. Further studies using animal models are needed for more accurate evaluations of the effectiveness of RPAA.

Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production (조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과)

  • Jin, Guang Lin;Shinekhuu, Judder;Qin, Wei-Ze;Kim, Jong-Kyu;Ju, Jong-Kwan;Suh, Seong-Won;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.59-74
    • /
    • 2012
  • Buffer solubility and protein fractionation were evaluated from the hays (timothy, alfalfa and klein) and straws (tall fescue and rice), and $In$ $vitro$ trial was conducted to examine the effect of buffer extraction on fermentation characteristics, degradability and gas ($CO_2$ and $CH_4$) production. Buffer soluble protein (SP) content and A fraction in total protein were highest in alfalfa hay as 61% and 41.77%, respectively while lowest in rice straw (42.8% and 19.78%, respectively). No difference was observed in B1 fraction among forages but B2 fraction was slightly increased in klein hay (12.34%) and tall fescue straw (10.05%) compared with other forages (6.34~8.85%). B3 fraction of tall fescue was highest as 38.49% without difference among other forages while C fraction was highest in rice straw. pH in incubation solution was higher in all forages after extraction than before extraction at 3h (P<0.01) and 6h (P<0.05), and pH from hays of timothy and alfalfa was higher than the other forages at 6h (P<0.05) and 12h (P<0.001). Regardless of extraction, ammonia-N concentration from alfalfa hay was increased at all incubation times and extraction effect was appeared only at 3h incubation time (P<0.01). Total VFA concentration from alfalfa hay was highest up to 24h incubation while those from tall fescue straw and rice straw were lowest. Buffer extraction decreased (P<0.01~P<0.001) the total VFA concentration. Acetic acid proportion was increased (P<0.001) before extraction of forages but no difference was found between forages. Propionic acid($C_3$) proportion was also increased(P<0.001) before extraction in all forages than in straws at 3h, 24h and 48h incubations, and $C_3$ from hays were mostly higher (P<0.05) than from straws. Butyric acid proportion, however, was not affected by extraction at most incubation times. Parameter 'a' regarding to the dry matter (DM) degradation was increase (P<0.001) in all forages before extraction, and was decreased (P<0.05) in tall fescue straw and rice straw compared with hays. Parameter 'b' was also increased (P<0.001) before extraction but no difference was found between forages. Effective degradability of DM (EDDM) was higher (P<0.001) before extraction in most forages except for rice straw. Buffer extraction decreased (P<0.05) all parameters (a, b, and c) regrading to the crude protein (CP) degradation but no difference was found between forages. Effective degradation of CP (EDCP) was lower (P<0.05) in straws than in hays. Parameters 'a' and 'b' regarding to the NDF degradation (P<0.01) and effective degradability of NDF (EDNDF, P<0.001) were also higher in forages before extraction than after extraction but no difference was found between forages. Buffer extraction reduced (P<0.05~P<0.001) $CO_2$ production from all the forages uo to 24h incubation and its production was greater (P<0.05~P<0.01) from hays than straws. Methane ($CH_4$) production was also greater (P<0.01~P<0.001) in all forages at all incubation times, and its production was greater (P<0.05) from hays than from straws at most incubation times. Based on the results of the current study, it can be concluded that buffer solubility and CP fractionation might be closely related with $In$ $vitro$ VFA concentration, degradability and gas ($CO_2$ and $CH_4$) production. Thus, measurement of buffer solubility and protein fractionation of forages might be useful to improve TMR availability in the ruminants.

Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves

  • Chang, S.S.;Lohakare, J.D.;Singh, N.K.;Kwon, E.G.;Nejad, J.G.;Sung, K.I.;Hong, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.202-210
    • /
    • 2013
  • This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age) divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay) was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW) were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061) only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (p<0.01). As planned, the calves in the control group had higher concentrate and lower forage intake than the restricted group. The plasma variables like total protein and urea were higher (p<0.05) in control than restricted group. The mRNA expressions for the gluconeogenic enzymes such as cytosolic phosphoenol pyruvate carboxykinase (EC 4.1.1.32) and pyruvate carboxylase (EC 6.4.1.1), and visfatin measured by quantitative real-time PCR in liver biopsies showed higher expression (p<0.05) in restricted group than control. Overall, restricting concentrate severely reduced the growth intensity and affected few plasma indices, and gene expression in liver was increased indicating that restricting concentrate in the feeding schemes during early growth for beef calves is not advocated.

Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers

  • Kang, H.J.;Lee, I.K.;Piao, M.Y.;Gu, M.J.;Yun, C.H.;Kim, H.J.;Kim, K.H.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.436-443
    • /
    • 2016
  • Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1) was for four weeks from March 7 to April 3 and period 2 (P2) was four weeks from April 4 to May 1. Mean ($8.7^{\circ}C$) and minimum ($1.0^{\circ}C$) indoor ambient temperatures during P1 were lower (p<0.001) than those ($13.0^{\circ}C$ and $6.2^{\circ}C$, respectively) during P2. Daily dry matter feed intake in both the concentrate diet and forage groups was higher (p<0.001) during P2 than P1. Average daily weight gain was higher (p<0.001) during P2 (1.38 kg/d) than P1 (1.13 kg/d). Feed efficiency during P2 was higher (p = 0.015) than P1. Blood was collected three times; on March 7, April 4, and May 2. Nonesterified fatty acids (NEFA) were higher on March 7 than April 4 and May 2. Blood cortisol, glucose, and triglyceride concentrations did not differ among months. Blood CD4+, CD8+, and CD4+CD25+ T cell percentages were higher, while CD8+CD25+ T cell percentage was lower, during the colder month of March than during May, suggesting that ambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

Effect of Different Feed Additives on Growth Performance and Blood Profiles of Korean Hanwoo Calves

  • Sarker, M.S.K.;Ko, S.Y.;Lee, S.M.;Kim, G.M.;Choi, J.K.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.52-60
    • /
    • 2010
  • This experiment was conducted on 60 Hanwoo calves comprising five feed additive groups, with 12 calves in each group, to determine the effects of additives at pre- and post-weaning on growth performance and blood profile. The groups were control, antibiotic (Neomycin 110 ppm), illite (2%), fermented green tea probiotics (FGTP, 0.5%), and mixed additives (FGTP 0.25%, illite 1% and licorice 0.1%). The calves were offered experimental pellet feeds ad libitum and after one month were supplied with imported timothy hay. They moved freely within the group and suckled their mother' milk during the pre-weaning stage (birth to 3 months) and were separated from their dam during the post-weaning stage (4-5 months). During the pre-weaning stage, the highest average daily gain (ADG) was recorded in the antibiotic- and mixed additive-fed groups followed by FGTP, control and illite groups. In the post-weaning stage, significantly higher total weight gain and ADG were recorded in both the FGTP and mixed additive groups compared to the other groups (p<0.05). Feed efficiency of mixed additive- and illite-fed calves were almost similar with antibiotic-fed calves compared to the other two groups, but the ADG was lowest in illite-fed calves during the pre-weaning stage. In contrast, post-weaning calves fed FGTP and mixed additives showed better feed efficiency. The values of hematological indices, differential leukocyte count, blood proteins and immunoglobulin among the additive-fed calves were not significantly different (p>0.05), although hemoglobin and hematocrit values were lower in FGTP compared to control, but similar in mixed additive and antibiotic groups. These results indicate no detrimental effects of feed additives on the blood profile of calves at both pre- and post-weaning age. Serum albumin in post-weaning calves of all feed additive groups were similar but significantly lower (p<0.05) than in the control group. Post-weaning, IgM was significantly lower (p<0.05) in illite-fed calves compared to other treatment groups, but there was no difference at pre-weaning. Considering all factors, the mixed feed additives and FGTP can be the replacement feed formula for antibiotic for Hanwoo beef calf production, especially when used post- weaning.

Blood Urea Nitrogen and Body Condition Score on Reproductive Efficiency in Korean Cattle (한우 번식효율에 대한 Blood Urea Nitrogen과 Body Condition Score의 영향)

  • 정영훈;이명식;전기준;장선식;서국현;박정준;이창우;나기준;노규진
    • Journal of Embryo Transfer
    • /
    • v.19 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • The environmental impact of nutrient waste from agriculture has become an area of concern as ways to produce more food and of offspring. In dairy cattle, as the genetic capacity for milk production has increased, decreased fertility has become a severe problem by feeding high dietary protein, resulting in high concentration of blood urea nitrogen (BUN). There are numerous reports on BUN which is associated with reduced conception rates and closely related to body condition score (BCS) in lactating cattle, but not in Korean native cattle. This study was therefore performed to investigate the relation of BUN to both BCS and conception rates in Korean cattle. A total of 400 female Korean cattle (2∼5 years) in Daewanryong were used for this experiment. Feeding condition divided into two groups depending on grazing and darn feeding period. In grazing period, the mixture of Timothy, Orchard grass and Tall fescue, and concentrates (2.5 kg/day) was fed whereas hay (6.5 kg/day) and corn silage (20 kg/day) were fed while barn feeding period. Average BUN concentration at grazing and barn feeding were 7.39$\pm$2.65 mg/㎗ and 12.36$\pm$2.92 mg/㎗, respectively. During grazing period, high rates of pregnancy showed at 4∼8 mg/㎗ BUN concentration. In barn feeding period, 66%, of cattle were in pregnant at 8∼l4 mg/㎗ BUN concentration. The BCS for obtaining high rate of pregnancy raged at 2.5∼3.5. However, BUN did not directly relate to BCS in Korean cattle.

Preliminary study on the use of near infrared spectroscopy for determination of plasma deuterium oxide in dairy cattle

  • Purnomoadi, Agung;Nonaka, Itoko;Higuchi, Kouji;Enishi, Osamu;Amari, Masahiro;Terada, Fuminori
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4101-4101
    • /
    • 2001
  • Information of body composition (fat and protein) in living animal is important to determine the nutrients requirement. Deuterium oxide (D2O) dilution techniques, as one of isotope dilution techniques have been useful for the prediction of body composition. However, the determination of D2O concentration is time consuming and complicated. Therefore this study was conducted to develop a new method to predict D2O concentration in plasma using near infrared spectroscopy technique (NIRS). Four dairy cows in early lactation were used. They were fed total mixed ration containing conr silage, timothy hay, and concentrates to make 17.0%CP and 14.0 MJDE/kgDM. Dosing D2O was at week 1,3 and 5 after parturition. After dosing D2O, the blood was collected from hour 0 to 72. Blood samples were then centrifuge at 3,000 rpm for 10 minutes to obtain plasma. D2O concentration was analyzed by gas chromatograph (deuterium oxide analyzable system, HK102, Shokotsusyou) after extracted from plasma by liophilization. Plasma sample was scanned by NIRS using Pacific Scientific (Neotec) model 6500 (Perstorp Analytical, Silver Spring, MD) in the range of wavelength from 1100 to 2500 nm. Calibration equation was developed using multiple linear regression. Sample from one animal (cow #550; n: 74) was used for developing the calibration while the rest three animals were used for validating the equation. The range, R and SEC of the calibration set samples were 135-925 ppm, 0.93 and 48.1 ppm, respectively. Validation of the calibration equation for three individual cows was done and the average of NIR predicted value of D2O at each collection time from three weeks injection showed a high correlation. The range, r and 53 of plasma from cow #474 were 322-840 ppm,0.93 and 53.1; cow #478 were 146-951 ppm,0.95 and 39.8; cow #942 were 313-885 ppm,0.95 and 37.2, respectively. Judgement of accuracy based on ratio of standard deviation and standard error in validation set samples (RPD) for cow #474, #478 and #942 were 2.2,4.3 and 3.4, respectively. The error in application due to the variation between individual was considered smaller than the bias from collection period, however, this prediction can be overcome with correction of standard zero-minute concentration of blood. The results of this preliminary study on the use of NIRS for determination of D2O in plasma showed very promising as shown by a convenient and satisfy accuracy. Further study on various physiological stage of animal should be done.

  • PDF

Influence of Temperature and pH on Fermentation Pattern and Methane Production in the Rumen Simulating Fermenter (RUSITEC)

  • Bhatta, R.;Tajima, K.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • An experiment was conducted to study the effect of temperature and pH on in vitro nutrient degradability, volatile fatty acid profile and methane production. The fermenter used was the semi-continuous system, known as the rumen simulation technique (RUSITEC). Sixteen cylinders were used at one time with a volume of 800 ml, the dilution rate was set at 3.5%/hour, the infused buffer being McDougall's artificial saliva. Basal diet (9.6 g DM) used in RUSITEC consisted of (DM) 6.40 g Timothy hay, 1.86 g crushed corn and 1.34 g soybean meal. The food for the fermentation vessel was provided in nylon bags, which were gently agitated in the liquid phase. The experiment lasted for 17 d with all the samples taken during the last 5 d. Treatments were allocated at random to four vessels each and were (1) two temperature levels of $39^{\circ}C$ and $41^{\circ}C$ (2) two pH levels of 6.0 and 7.0. The total diet contained ($g\;kg^{-1}$ DM) 957 OM, 115 CP and $167MJ\;kg^{-1}$ (DM) GE. Although increase in temperature from $39^{\circ}C$ to $41^{\circ}C$ reduced degradation of major nutrients in vitro, it was non-significant. Interaction effect of temperature with pH also reflected a similar trend. However, pH showed a significant (p<0.05) negative effect on the degradability of all the nutrients in vitro. Altering the in vitro pH from 7 to 6 caused marked reduction in DMD from 60.2 to 41.8, CPD from 76.3 to 55.3 and GED from 55.3 to 35.1, respectively. Low pH (6) depressed total VFA production (61.9 vs. 34.9 mM) as well as acetate to propionate ratio in vitro (from 2.0 to 1.5) when compared to pH 7. Compared to pH 7, total gas production decreased from 1,841 ml to 1,148 ml at pH 6, $CO_2$ and $CH_4$ production also reduced from 639 to 260 ml and 138 to 45 ml, respectively. This study supported the premise that pH is one of the principal factors affecting the microbial production of volatile fatty acids and gas. Regulating the ruminal pH to increase bacterial activity may be one of the methods to optimize VFA production, reduce methane and, possibly, improve animal performance.