• 제목/요약/키워드: timoshenko beam element

검색결과 177건 처리시간 0.018초

유연보의 동역학 해석에 대한 선형 및 비선형 유한요소 정식화 (Formulations of Linear and Nonlinear Finite Element for Dynamic Flexible Beam)

  • 윤성호
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.113-121
    • /
    • 2006
  • This paper established the dynamic model of a flexible Timoshenko beam capable of geometrical nonlinearities subject to large overall motions by using the finite element method. Equations of motion are derived by using Hamilton principle and are formulated in terms of finite elements using CO elements in which the nonlinear constraint equations are adjoined to the system using Lagrange multipliers. In the final formulation are presented Coriolis and Gyroscopic forces as well as linear and nonlinear stiffnesses effects for the forthcoming numerical computation.

진동특성을 이용한 외팔보의 크랙 및 손상 검출에 대한 연구 (Study on Detection of Crack and Damage for Cantilever Beams Using Vibration Characteristics)

  • 손인수;안성진;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.935-942
    • /
    • 2009
  • In this paper, the purpose is to investigate the natural frequency of a cracked Timoshenko cantilever beams by FEM(finite element method) and experiment. In addition, a method for detection of crack in a cantilever beams is presented based on natural frequency measurements. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The detection method of a crack location in a beam based on the frequency measurements is extended here to Timoshenko beams, taking the effects of both the shear deformation and the rotational inertia into account. The differences between the actual and predicted crack positions and sizes are less than 6 % and 23 % respectively.

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

탄성지반으로 지지된 보강판의 안정해석 (Stability Analysis of Stiffened Plates on Elastic Foundations)

  • 이병구;이용수;오숙경;이태은
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성 (Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations)

  • 류봉조;임경빈;윤충섭;류두현
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1075-1082
    • /
    • 2000
  • 본 논문은 이중 탄성기초 위에 놓인 테이퍼진 티모센코 보의 진동과 동적 안정성에 대한 연구로써, 이중 탄성기초는 지반모델에서 흔히 이용되는 분포 Winkler 스프링들과 전단기초층으로 구성된다. 보의 전단변형과 회전관성이 고려되고, 지배방정식은 Halmilton원리를 이용한 에너지 표현식에 의해 유도된다. 고유진동수와 좌굴하중을 구하기 위해 관계되는 고유치 문제를 풀며, 출력을 받는 보의 진동에 대한 수치해석결과들이 제시되는 다른 방법을 사용한 유용한 해의 결과들과 비교된다. 출력을 받고 탄성기초 위에 놓인 테이퍼진 티모센코 보의 고유진동수, 모드 형상, 그리고 임계하중 값들이 다양한 테이퍼 두께의 비, 전단기초 파라미터, Winkler 기초파라미터, 경계조건의 변화에 대해 조사된다.

  • PDF

종동력을 받는 원통형 쉘의 동적 안정성에 관한 연구 (Dynamic Stability of Cylindrical Shells Subjected to Follower Forces)

  • 김현순;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.396-401
    • /
    • 1997
  • Dynamic stability of cylindrical shells subjected to follower forces is analyzed in this paper. Motion of shells is formulated in curvilinear coordinates that is consistent with assumptions made in the Timoshenko beam and the Mindlin plate. Using the finite element method, the induced equations are reduced to an equation with finite degrees of freedom. The 9-node Lagrangian element is used, and reduced integration is used to avoid shear and membrane locking. The effects of thickness ratio on the dynamic stability of cylindrical shells are studied.

  • PDF

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

박벽보의 3차원 후좌굴 해석을 위한 Locking-Free 보요소 (An Assumed Strain Beam Element for Spatial Post-Buckling Analysis of Non-symmetric and Shear Flexible Thin-Walled Beams)

  • 이경찬;김문영;박정일;장승필
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.719-730
    • /
    • 2007
  • Timoshenko의 전통적인 보 이론에 근거한 유한 요소의 전단 잠김 현상을 해결하기 위하여 가정 변형도법을 적용한 7자유도 공간 박벽 뼈대요소를 개발하였다. 2개의 노드를 갖는 직선 보요소에서 한 요소내의 변형도가 일정하다고 가정하여 형상함수를 유도하고 이를 바탕으로 가상일의 원리에 따라 강성행렬을 구성하였다. Corotational 기하 비선형 해석법을 이용하여 불평형 하중을 산정하였으며 부재 길이의 비선형 효과를 반영하기 위하여 bowing effect를 정밀하게 고려하였다. 일축 비대칭 단면을 갖는 곡선 외팔보와 이축 비대칭 단면을 갖는 직선 외팔보에 대하여 횡-비틀림 좌굴에 의한 안정 해석과 후좌굴 해석을 수행한 결과 ABAQUS 쉘요소와 좋은 일치를 보여 주었다.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.