• Title/Summary/Keyword: timing error

Search Result 377, Processing Time 0.023 seconds

Vibration Analysis of Bladed Disk using Non-contact Blade Vibration System

  • Joung, Kyu-Kang;Han, Chak-Heui;Kang, Suk-Chul;Kim, Yeong-Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.871-876
    • /
    • 2008
  • The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue(HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.

  • PDF

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.

Linearity improvement of UltraScale+ FPGA-based time-to-digital converter

  • Jaewon Kim;Jin Ho Jung;Yong Choi;Jiwoong Jung;Sangwon Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.484-492
    • /
    • 2023
  • Time-to-digital converters (TDCs) based on the tapped delay line (TDL) architecture have been widely used in various applications requiring a precise time measurement. However, the poor uniformity of the propagation delays in the TDL implemented on FPGA leads to bubble error and large nonlinearity of the TDC. The purpose of this study was to develop an advanced TDC architecture capable of minimizing the bubble errors and improving the linearity. To remove the bubble errors, the decimated delay line (DDL) architecture was implemented on the UltraScale + FPGA; meanwhile, to improve the linearity of the TDC, a histogram uniformization (HU) and multi-chain TDL (MCT) methods were developed and implemented on the FPGA. The integral nonlinearities (INLs) and differential nonlinearities (DNLs) of the plain TDCs with the 'HU method' (HU TDC) and with 'both HU and MCT methods' (HU-MCT TDC) were measured and compared to those of the TDC with 'DDL alone' (plain TDC). The linearity of HU-MCT TDC were superior to those of the plain TDC and HU TDC. The experiment results indicated that HU-MCT TDC developed in this study was useful for improving the linearity of the TDC, which allowed for high timing resolution to be achieved.

Development of K-Maryblyt for Fire Blight Control in Apple and Pear Trees in Korea

  • Mun-Il Ahn;Hyeon-Ji Yang;Sung-Chul Yun
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.290-298
    • /
    • 2024
  • K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This model facilitates the precise determination of the blossom infection timing and identification of primary inoculum sources, akin to Maryblyt, predicting flower infections and the appearance of symptoms on various plant parts, including cankers, blossoms, and shoots. Nevertheless, K-Maryblyt has undergone significant improvements: Integration of Phenology Models for both apple and pear trees, Adoption of observed or predicted hourly temperatures for Epiphytic Infection Potential (EIP) calculation, incorporation of adjusted equations resulting in reduced mean error with 10.08 degree-hours (DH) for apple and 9.28 DH for pear, introduction of a relative humidity variable for pear EIP calculation, and adaptation of modified degree-day calculation methods for expected symptoms. Since the transition to a model-based control policy in 2022, the system has disseminated 158,440 messages related to blossom control and symptom prediction to farmers and professional managers in its inaugural year. Furthermore, the system has been refined to include control messages that account for the mechanism of action of pesticides distributed to farmers in specific counties, considering flower opening conditions and weather suitability for spraying. Operating as a pivotal module within the Fire Blight Forecasting Information System (FBcastS), K-Maryblyt plays a crucial role in providing essential fire blight information to farmers, professional managers, and policymakers.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

Surgical Complications of Cerebral Arterivenous Malformation and Their Management (뇌동정맥기형의 외과적 수술합병증과 그 처치)

  • Yim, Man-Bin;Kim, Il-Man
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1126-1135
    • /
    • 2000
  • Objectives : The goal of surgical management of cerebral arteriovenous malformation(AVM) is elimination of the lesion without development of new neurological deficits. To improve the management results of cerebral AVMs in the future, this article discusses about surgical complications of the AVM and their management. Material and Methods : During the past 18 years, 116 patients with cerebral AVMs were managed by surgery. Among these cases, 7 cases died, 7 cases developed new neurological deficits, 11 cases residual AVM and 5 cases intracerebral hematoma(ICH) after surgery. The author analyzes the causes of those complications and investigates the methods to minimized those complications based on the review of the literatures. Results : One stage removal of AVM and ICH in the poor neurological state were performed in 5 of 7 death cases. Subtotal removal of ICH followed by delayed AVM surgery after recovery is regard as one method to improve the outcome of patient with large ICH. Postoperative new neurological deficits developed owing to normal perfusion pressure breakthrough(NPPB) in 3, judgement error in 2, preoperative embolization in 1 and cortical injury in 1 case(s). Proper management of NPPB, accurate anatomical knowledge and physiological monitoring during operation, and well trained skill for embolization are regard as methods to minimize those complications. Residual AVMs after surgery were noticed in 11 cases, in which unintended 6 cases due to inaccurate dissection of peripheral margin of AVM, and intended 3 cases due to massive brain swelling during operation, 1 cases due to diffuse type and 1 case due to multiple type of AVM. Accurate dissection of peripheral margin of AVM and mild hypotension during operation may help to avoid this complication. Postoperative hemorrhage occurred in 3 cases due to rupture of the residual AVM and in 2 cases due to oozing from the AVM bed. Complete resection of AVM, complete control of bleeding points at AVM bed and mild hypotension during early postoperative period are the methods to avoid this complication. Conclusion : A precise but flexible therapeutic strategy and refined skill for endovascular, radiosurgical and microsurgical techniques are required to successful treatment of cerebral AVM. Adequate timing of AVM resection, accurate anatomical knowledge, proper management of NPPB and accurate dissection of peripheral margin of AVM are the key points for avoiding complications of the AVM surgery.

  • PDF

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

Development of Gait Event Detection Algorithm using an Accelerometer (가속도계를 이용한 보행 시점 검출 알고리즘 개발)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryoul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • The purpose of this study was to develop and automatic gait event detection algorithm using single accelerometer which is attached at the top of the shoe. The sinal vector magnitude and anterior-posterior(x-axis) directional component of accelerometer were used to detect heel strike(HS) and toe off(TO), respectively. To evaluate proposed algorithm, gait event timing was compared with that by force plate and kinematic data. In experiment, 7 subjects performed 10 trials level walking with 3 different walking conditions such as fast, preferred & slow walking. An accelerometer, force plate and 3D motion capture system were used during experiment. Gait event by force plate was used as reference timing. Results showed that gait event by accelerometer is similar to that by force plate. The distribution of differences were spread about $22.33{\pm}17.45m$ for HS and $26.82{\pm}14.78m$ for To and most error was existed consistently prior to 20ms. The difference between gait event by kinematic data and developed algorithm was small. Thus it can be concluded that developed algorithm can be used during outdoor walking experiment. Further study is necessary to extract gait spatial variables by removing gravity factor.