• Title/Summary/Keyword: time-temperature curve

Search Result 390, Processing Time 0.027 seconds

Time-Temperature Curve for Fire Safety Assessment of Metropolitan Transit Tunnels (도시철도 터널구조체의 내화안정성 평가를 위한 표준시간-온도곡선 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Lee, Su-Jin;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • The study presents a standard time-temperature curve to evaluate the fire performance of subway tunnel structures. The central subway section is 135km long in Korea, the fourth longest in the world. The number of subway tunnels has been increasing rapidly and fire risk is proportional to the tunnel length. However, an adequate time-temperature curve for subway tunnel fires does not exist. Therefore, we studied a proposed foreign fire design model for which the heat rate is based on the traffic, and we present an appropriate time-temperature curve for Korean subway tunnels. The ISO 834 curve was used as a fire design model and the temperature distribution in the tunnel was estimated using numerical analysis. This led to a proposal for effective measures against subway tunnel fires.

Study of Hopkinson Effect in the HDDR-treated Nd-Fe-B-type Material

  • Kwon, H.W.;Shon, S.W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.397-406
    • /
    • 2000
  • Hopkinson effect in the HDDR-treated Nd$\sub$15/Fe$\sub$77/B$\sub$8/ alloy was examined in detail by means of a thermomagnetic analysis with low magnetic field (600 Oe). The emergence and magnitude of maximum in magnetisation in the thermomagnetic curve due to the Hopkinson effect was correlated to the grain structure and coercivity of the HDDR-treated material. the HDDR-treated materials showed clear Hopkinson effect (maximum in magnetisation just below the Curie temperature of the Nd$\sub$2/Fe$\sub$14/B phase) on heating in the thermomagnetic curve. Magnitude of the magnetisation rise due to the Hopkinson effect became smaller as the recombination time increased. The magnetisation recovery at room temperature on cooling from above the Curie temperature became smaller as the recombination time increased. The HDDR-treated materials with shorter recombination time, finer grain size and higher coercivity showed larger magnetisation maximum due to Hopkinson effect in the thermomagnetic curve.

  • PDF

Applied Time-Temperature Curve for Safety Evaluation in the Road Tunnel by Fire (도로터널내 화재에 따른 터널구조체의 안정성 평가를 위한 시간-온도곡선의 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.551-555
    • /
    • 2009
  • This study is performed to apply a standard to evaluate fire protection assessment for tunnel structures when a fire breaks out in the road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in Korea. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore, we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate. At the end, Hydrocarbon modified curve applied as design fire model by using numerical analysis and presented design fire model and examined the effects of tunnel structures.

Prediction of the Rhelolgical of Soybean Curd during Storage by using WLF equation (저장중의 두부에 WLF식을 이용한 물성 변화 예측에 관하여)

  • Jang, Won-Young;Kim, Byung-Yong;Kim, Myoung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 1995
  • The changes in the rheological properties of soybean curd upon the various storage temperatures ($5{\sim}25^{\circ}C$) were measured by the stress-relaxation test and analysed by time-temperature superposition theory. As the storage temperature was lower, higher initial and equilibrium stress of soybean curd were observed. When the stress-relaxation curves were moved horizontally by using the shift-factor on the basis of reference temperature, the master curve was obtained. By applying master curve and shift-factor to the WLF (Williams-Landel-Ferry) equation, activation energy (30kcal/mol) was calculated and storage time at the specific temperature could be predicted, suggesting the equivalent shelf-life of soybean curd texture.

  • PDF

Time-Temperature Superposition Behavior for Accelerated Fatigue Lifetime Testing of Polycarbonate(PC) (폴리카보네이트(PC)의 가속 피로수명 시험을 위한 시간-온도 호환성)

  • Kim Gyu-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.976-984
    • /
    • 2006
  • Time-temperature superposition has been studied to determine the long-term fatigue life over millions of cycles for glassy polymers. π le superposition is supposed to make an accelerated lifetime testing (ALT) technique possible. Dog-bone shaped specimens made of carbon filled Polycarbonate (PC) were tested under fatigue, based on the stress-lifetime approach (S-N curve). Fatigue-induced localized yield-like deformation is considered as the defect leading to fatigue and its evolution behavior is characterized by a modified energy activation model in which temperature is considered as fatigue acceleration factor. This model allows the reduced time concept to account for effects of different temperature in short-term fatigue data to determine long-term fatigue life through the use of time-temperature superposition that is applicable under a low frequency and isothermal conditions. The experimental results validated that the proposed technique could be a possible method for accelerated lifetime testing (ALT) of time-dependent polymeric materials.

Analysis of MICC, ELA TFT performance transition according to substrate temperature and gate bias stress time variation (온도 변화 및 Gate bias stress time에 따른 MICC, ELA TFT성능 변화 비교 분석)

  • Yi, Seung-Ho;Lee, Won-Baek;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.368-368
    • /
    • 2010
  • Using TFTs crystallized by MICC and ELA, electron mobility and threshold voltage were measured according to various substrate temperature from $-40^{\circ}C$ to $100^{\circ}C$. Basic curve, $V_G-I_D$, is also measured under various stress time from 1s to 10000s. Consequently, due to the passivation effect and number of grains, mobility of MICC is varied in the range of -8% ~ 7.6%, while that of ELA is varied from -11.04% ~ 13.25%. Also, since $V_G-I_D$ curve is dominantly affected by grain size, active layer interface, the graph remained steady under the various gate bias stress time from 1s to 10000s. This proves the point that MICC can be alternative technic to ELA.

  • PDF

A study on the deterministic temperature-time curves and required resistance times by fire model for assessment of fire resistance of tunnel structures (터널의 내화성능 평가용 화재온도곡선과 화재모델별 내화시간에 대한 고찰)

  • Kim, Hyo-Gyu;Park, Kyung-Whan;Yoon, Myong-O;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.165-176
    • /
    • 2005
  • A variety of research projects have been undertaken due to the recent catastrophic tunnel fires throughout the world, Among them, more emphasis was given to full scale and scale model fire experiments, and recently the area of fire resistance of tunnel structures attract more interests, On the contrary to the cases in most of the advanced countries where design standards as well as recommendations have already been announced, no local criteria for design can be found, This paper aims at deriving the fire characteristics appropriate for the assessment criteria of fire resistance of structures in local tunnels through studying the existing fire temperature curves including ISO 834 standard temperature curve, HC curve, RWS curve, ZTV curve and EBA curve.

  • PDF

An Experimental study on the Viscoelastic Coefficient of Polystyrene (폴리스티렌의 점탄성 계수에 관한 실험적 연구)

  • Yoon, Kyung-Hwan;Yu, Bong-Kun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.751-754
    • /
    • 2000
  • Stress relaxation experiments were performed to obtain the material properties to be used in the linear viscoelastic study. Master curve of the modulus of polystyrene were obtained by using the time-temperature superposition principle. Because Shyu and Tobolsky's tensile relaxation modulus master curve or Polystyrene material showed very large difference, in-house data were required to calculate the residual stresses in injection-molded products more accurately. Our own experimental data showed that the master curve Shyu's data should be shifted about two orders in material time coordinate.

  • PDF

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

A Study on Creep Behavior of Geosynthetics Considering Effect of Temperature and Confining Stress (온도 및 구속응력을 고려한 토목섬유의 크리프거동에 관한 연구)

  • 방윤경;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.291-299
    • /
    • 2003
  • The effect of temperature and soil confining stress on geosyntheic creep behaviour was studied by performing the temperature dependent confined creep tests for HDPE geogrid and geomembrane specimen. The visco-elastic creep coefficients of the geosynthetics were evaluated by the test results and it was proposed that the simple expressions for the instantaneous and limit creep strain of geosynthetics was considered as a function of temperature and confining stress on geosynthetics. Based on the time-temperature superposition principle, a master curve has been drawn for extrapolating tensile creep strains to longer time intervals(1$\times$10 $^7$min.∼1$\times$10$^{10}$min.). By using this master curves, the shift factors which can be used in establishing master curve considering confining stress on geosynthetics were carried out. Each tests was performed during 8,000∼12,000 min., with temperature ranging between 5$^{\circ}C$ and 4$0^{\circ}C$ and with confining stress ranging between 0 t/$m^2$ and 9 t/$m^2$.