• Title/Summary/Keyword: time-temperature control

Search Result 2,349, Processing Time 0.038 seconds

Real Time Near Optimal Control Application Strategy for Heat Source and HVAC System (열원 및 공조설비 통합 최적제어기법 구현에 관한 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon;Joo, Yong-Duk;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.60-65
    • /
    • 2008
  • The near-optimal control algorithm for central cooling and heating system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled or hot water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling and heating control system.

  • PDF

A study on a precision temperature control unit using thermoelectirc module (열전소자를 이용한 정밀 항온 유지 장치에 관한 실험 및 시뮬레이션 연구)

  • Park, Kyung-Seo;Song, Young-Joog;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1937-1941
    • /
    • 2007
  • During a process of a nanoimprint for manufacturing LCD, a small temperature variation on the LCD glass can cause thermal stress and generate unexpected displacement. To avoid this trouble, a precision temperature control unit using thermoelectric modules is appropriate for nanoimprint processes. The unit consists of an air control system, a cooling water control system, and a power control system. The air control system includes a thermoelectric module, thermocouples measuring temperatures of air and a duct-stale fin, and two air fans. The heat generated by the thermoelectric module is absorbed by the cooling water control system. The power control system catches the temperature of the thermoelectric module, and a PID controller with SCR controls the input power of the thermoelectric module. Temperature control performance is evaluated by experiment and simulation. The temperature control unit is able to control the exit temperature about ${\pm}2^{\circ}C$ from the incoming fluid temperature, and the error range is ${\pm}0.1^{\circ}C$. However, the control time is approximately 30minute, which needs further study of active control

  • PDF

A Time Dependent Analysis of Thermal Environment in Beehouse

  • Lee, Suk-Gun;Li, Zhenhai;Choi, Kwang-Soo
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.11a
    • /
    • pp.20-26
    • /
    • 1997
  • The design or analysis of beehouse inside temperature environment based on steady heat transfer theory causes much deviation and theoretically it is impossible to control the inside temperature lower than the outside temperature under the condition that the bee produces heat and no cooling equipment is installed. But in practical use of beehouse, the inside temperature is somehow lower than the outside temperature because of the heat inertia of concrete floor. (omitted)

  • PDF

Fuzzy Self-Organizing Control of Environmental Temperature Chamber (온도챔버의 퍼지 자동조정 제어시스템)

  • 김인식;권오석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.34-40
    • /
    • 1994
  • The design and implementation of a fuzzy self-organizing controller for an environmental temperature chamber is discussed. The chamber is a non-linear, time-variant system with delay-time and dead-time. And the parameter tuning is required in PI control when the performance degraded. However the proposed fuzzy-SOC monitors the performance of the process. modifies the data base, and performs the delay-time compensation based on the idealized process model. A series of experiments was performed for the conventional PI and the fuzzy-SOC. These experimental results show the usefulness of the fuzzy-SOC.

  • PDF

A New Temperature Control System by PWM Control Method for Thermal Massage System (PWM 제어방식에 의한 온열치료기의 새로운 온도제어 시스템)

  • Song, Myoung-Gyu;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.409-419
    • /
    • 2014
  • This paper proposes a new temperature control algorithm and system configuration of the pTMS(personal Thermal Massage System). By controlling the pulse width of the PWM(Pulse Width Modulation), the temparature of the heating lamp can be controlled stably, which is indispensable to the massage function. This technology is also adapted to the 'thermal massage', 'thermal acupressure', 'thermal moxibustion' functions of medical equipments. The temperature could be set at between $40^{\circ}C{\sim}70^{\circ}C$ by increments of $5^{\circ}C$, the control could be made in real time by increments of $1^{\circ}C$, and the temperature is displayed on the monitor by triggering every 2 seconds. when the present temperature is equal to the preset temperature, the PWM signal is minimized, and when the present temperature is higher than the preset temperature, overheating is prevented by interrupting the PWM output signal. When the difference of temperature exceeds $4^{\circ}C$, the PWM control is maximized in order for the system to reach the target temperature within a short period of time.

A study on the design of Carbon Dioxide Measurement System using Infrared sensor and PID temperature control (PID 온도 제어 및 적외선 센서를 이용한 이산화탄소 측정 시스템 설계에 관한 연구)

  • Lim, Hyung-Taek;Beack, Seung-Hwa;Joo, Kwan-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • The $CO_2$ measuring system using infrared sensor has the variance according to the temperature change. Therefore, the temperature compensation should be needed to obtain a reliable measurement. In this study, the sensor module consist of infrared $CO_2$ Sensor, IR Source, pipe and the heater and measuring system has amplifier, A/D converter and microprocessor. And we suggest a method to reduce the error by using the PID temperature control. We use optimum parameters setting of Ziegler & Nichols as well as PID temperature control algorithm for the temperature compensation. In this method, PID optimum parameter is set from dummy time(L) and maximum slope(R). As a result of using this PID temperature control, it is founded that it has the fast response and low steady state error. Therefore, it is certainly proved that this is very suitable algorithm to correct the error on measurement.

  • PDF

The Improvement of the Sanitary Production and Distribution Practices for Packaged Meals (Kim Pab) Marketed in Convenience Stores Using Hazard Analysis Critical Control Point (HACCP) system (편의점 판매용 김밥 도시락 생산 및 유통과정의 품질개선을 위한 연구)

  • 곽동경;김성희;박신정;조유선;최은희
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.177-187
    • /
    • 1996
  • Time-temperature relationship and microbiological quality were assessed and critical control points were identified through hazard analysis during the phases of production in two different packaged meals (Dosirak) manufacturing establishments (A, B:Kim Pab). Microbiological tests on foods, equipments and utensils were done according to standard procedures and included total plate count, coliforms and fecal coliforms. The results of the study are summarized as follows : time-temperature control management was needed because time-temperature abuse more than 8 hours at dangerous temperature zone (5-6$0^{\circ}C$) was observed from pre-preperation to distribution phase; Poor sanitary practices of employees were observed in hand washing and using disposable gloves; Microbiological analysis results of equirpments and utensils showed possible cross-contamination risks when foods were contacted with them; Kim Pab needed thorough quality control because it included various mixed ingredients of cooked and uncooked and had many apportunities of cross-contamination either by equipments or hands through whole production processes.

  • PDF

Hazard Analysis of Commissary School Foodservice Operations (공동조리 학교급식의 미생물적 품질보증을 위한 위험요인 분석)

  • 곽동경;남순란;김정리;박신정;서소영;김성희;최은희
    • Korean journal of food and cookery science
    • /
    • v.11 no.3
    • /
    • pp.249-260
    • /
    • 1995
  • 6 Central commissary and 2 conventional school foodservice operations were assessed in terms of time-temperature relationship and microbiological quality, and monitoring control methods were identified through hazard analysis during the phases of prodution and distribution. 2 conventional schools from Seoul and 6 commissary schools from Kyungkido were participated in the survey. Meals produced in central commissary were distributed to satellites, therefore delivery practices of foods were identified as critical. Microbiological test results for commissary and conventional schools revealed that microbiological quality of foods was mainly related to time-temperature management, types of food, and equipment sanitation not to the foodservice system used. Time-temperature profiles at temperature danger zone (7.2-60$^{\circ}C$) observed were to be related to the following sanitary practices: cooked vegetables were held at temperature danger zone for relatively longer delayed time (15-38$^{\circ}C$: 15-226 min, 7-60$^{\circ}C$: 75-226 min), and same results were observed for deep-fat fried cutlets (15-38$^{\circ}C$: 15-151 min, 7-60$^{\circ}C$: 33-151 min). Menu items with various ingredients and frequent contacts with hands and equipments during the production flow were held at temperature danger zone for longer delaying time than other menu items with brief prodution stages. Based on hazard analysis critical control points, microbiological quality was collectively affected by time-temperature relationships, equipment sanitation, proper cooking methods, and sanitary management competencies of dietitians. Microbiological test results of working equipments and surface of dishes and trays showed that immediate action should be taken. Cutting boards used in central kitchen were also showed similar results of potential dager of cross-contamination. Effective sanitary control methods were urgently needed.

  • PDF

The Automatic Temperature and Humidity Control System for Laver Drying Machine Using Fuzzy (퍼지를 이용한 해태건조기용 자동 온도${\cdot}$습도 제어시스템)

  • 김은석;주기세
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.167-173
    • /
    • 2002
  • The look up table method conventionally applied to control the inner temperature and humidity of a laver drying machine has repeatedly occurred not only laver's damage but also inferior goods since the reaching time at the optimum state takes a long time. In this paper, a fuzzy control theory instead of the look up table was proposed to reduce the reaching time at the optimum state. The proposed method used six input variables and four output variables for the fuzzy control, and a triangle rule for a fuzzifier, The Mandani's min-max method was applied to a fuzzy inference. Also, the mean method of maximum was applied to a defuzzifier. The method applied to the fuzzy controller contributed to reduce the reaching time at the optimum state, and to minimize not only laver's damage but also inferior goods.

Optimal filter design at the semiconductor gas sensor by using genetic algorithm (유전알고리즘을 이용한 반도체식 가스센서 최적 필터 설계)

  • Kong, Jung-Shik
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • This paper is about elimination the situation in which gas sensor data becomes inaccurate due to temperature control when a semiconductor gas sensor is driven. Recently, interest in semiconductor gas sensors is high because semiconductor sensors can be driven with small and low power. Although semiconductor-type gas sensors have various advantages, there is a problem that they must operate at high temperatures. First temperature control was configured to adjust the temperature value of the heater mounted on the gas sensor. At that time, in controlling the heater temperature, gas sensor data are fluctuated despite supplying same gas concentration according to the temperature controlled. To resolve this problem, gas and temperature are extracted as a data. And then, a relation function is constructed between gas and temperature data. At this time, it is included low pass filter to get the stable data. In this paper, we can find optimal gain and parameters between gas and temperature data by using genetic algorithm.