• Title/Summary/Keyword: time-frequency spectrogram

Search Result 42, Processing Time 0.033 seconds

Impulse Response Filtration Technique for the Determination of Phase Velocities from SASW Measurements (SASW시험에 의한 위상속도 결정을 위한 임펄스 응답필터 기법)

  • ;Stokoe, K.H., Il
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.111-122
    • /
    • 1997
  • The calculation of phase velocities in Spectral-Analysis -of-Surface -Waves (SASW) meas urements requires unwrapping phase angles. In case of layered systems with strong stiffness contrast like a pavement system, conventional phase unwrapping algorithm to add in teger multiples of 2n to the principal value of a phase angle may lead to wrong phase volocities. This is because there is difficulty in counting the number of jumps in the phase spectrum especially at the receiver spacing where the measurements are in the transition Bone of defferent modes. A new phase interpretation scheme, called "Impulse Response Fil traction ( IRF) Technique," is proposed, which is based on the separation of wave groups by the filtration of the impulse response determinded between two receivers. The separation of a wave group is based on the impulse response filtered by using information from Gabor spectrogram, which visualizes the propagation of wave groups at the frequency -time space. The filtered impulse response leads to clear interpretation of phase spectrum, which eliminates difficulty in counting number of jumps in the phase spectrum. Verification of the IRF technique was performed by theoretical simulation of the SASW measurement on a pavement system which complicates wave propagation.opagation.

  • PDF

Development of Ultrasound Sector B-Scanner(III)-Pulsed Ultrasonic Doppler System- (초음파 섹터 B-스캐너의 개발(III)-초음파 펄스 도플러 장치-)

  • 백광렬;안영복
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.139-146
    • /
    • 1986
  • Pulsed ultrasonic Doppler system is a useful diagnostic instrument to measure blood-flow-velocity, velocity profile, and volume-blood-flow. This system is more powerful compare with 2-dimensional B-scan tissue image. A system has been deve- loped and ii being evaluated using TMS 32010 DSP. We use this DSP for the purpose of real-time spectrum analyzer to obtain spectrogram in singlegate pulsed Doppler system and for the serial comb filter to cancel clutter and zero crossing counter to estimate Doppler mean frequency in multigate pulsed Doppler system. The Doppler shift of the backscattered signals is sensed in a phase detector. This Doppler signal corresponds to the mean velocity over a some region in space defined by the ultrasonic beam dimensions, transmitted pulse duration, and transducer ban(iwidth. Multi- gate pulsed Doppler system enable the transcutaneous and simultaneous assessment of the velocities in a number of adjacent sample volumes as a continuous function of time. A multigate pulsed Doppler system processing the information originating from presented.

  • PDF

The comparative Study of the Acoustic Representation between Pansori singer's and Spasmodic dysphonia patient's Voice (병적인 소리 떨림증과 소리꾼 떨림증의 음향학적인 비교연구)

  • Hong, K.H.;Kim, H.G.;Lee, J.K.;Choi, J.S.
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.143-145
    • /
    • 2007
  • Muscle groups that are located in and around the vocal tract can produce audible changes in frequency and/or intensity of the voice. Vocal vibrato is a characteristic feature in the singing of performers trained in the western classical tradition and vibrato is generally considered to result from modulation in frequency amplitude and timbre. Vocal tremor is also characterized by periodic fluctuations in the voice frequency or intensity and vocal tremor is symptom of a neurological disease as Spasmodic dysphonia , Parkinson's disease. Vocal vibrato and Vocal tremor may have many of the same origins and mechanisms in the voice production systems. The purpose of this study is to find acostic character of Korean traditional song Pansori singer's vibrato and Spasmodic dysphonia patient's vocal tremor. twelve Pansori singers and seven Spasmodic dysponia patients participated to this study. Power spectrum and Real time Spectrogram are used to analyze the acoustic characteristics of Pansori singing and Spasmodic dysphonia patient's voice The results are as follows; First, vowel formant differences between Pansori singing and Spasmodic dysphonia patient's voice are higher F1, F3. Second, The vibrato rate show differences between Pansori singing and Spasmodic dysphonia patients;$4^{\sim}6/sec$ and $5{\sim}6/sec$ Vibrato rate of pitch is 5.7 Hz ${\sim}$ 42.4 Hz for Pansori singing , 3.8 Hz ${\sim}$ 27.9 Hz for Spasmodic dysphonia patients ;Vibrato rate of intensity range is 0.07 dB ${\sim}$ 8.26 dB for Pansori singing and 0.07 dB ${\sim}$ 4.81 dB for Spasmodic dysphonia patients

  • PDF

A Study on Speaker Identification by Difference Sum and Correlation Coefficients of Narrow-band Spectrum (좁은대역 스펙트럼의 차이값과 상관계수에 의한 화자확인 연구)

  • Yang, Byung-Gon;Kang, Sun-Mee
    • Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.3-16
    • /
    • 2002
  • We examined some problems in speaker identification procedures: transformation of acoustic parameters into auditory scales, invalid measurement values, and comparability of spectral energy values across the frequency range. To resolve those problems, we analyzed the acoustic spectral energy of three Korean numbers produced by ten female students from narrow-band spectrograms at 19 proportional time points of each voiced segment. Then, cells of the first five spectral matrices were averaged to form a matrix model for each speaker. The correlation coefficients and sum of the absolute amplitude difference in each pair of the spectral models of the ten subjects were obtained. Also, some individual matrix models were compared to those of the same subject or the other subject with a similar spectral model. Results showed that in numbers '2' and '9' subjects could not be clearly distinguished from the others but in number '4' it shed some possibility of setting threshold values for speaker identification if we employed the coefficients and the sum of absolute difference. Further studies would be desirable on various combinations of the range of long-term average spectra and the degree of signal pre-emphasis.

  • PDF

Feature Selection for Abnormal Driving Behavior Recognition Based on Variance Distribution of Power Spectral Density

  • Nassuna, Hellen;Kim, Jaehoon;Eyobu, Odongo Steven;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.119-127
    • /
    • 2020
  • The detection and recognition of abnormal driving becomes crucial for achieving safety in Intelligent Transportation Systems (ITS). This paper presents a feature extraction method based on spectral data to train a neural network model for driving behavior recognition. The proposed method uses a two stage signal processing approach to derive time-saving and efficient feature vectors. For the first stage, the feature vector set is obtained by calculating variances from each frequency bin containing the power spectrum data. The feature set is further reduced in the second stage where an intersection method is used to select more significant features that are finally applied for training a neural network model. A stream of live signals are fed to the trained model which recognizes the abnormal driving behaviors. The driving behaviors considered in this study are weaving, sudden braking and normal driving. The effectiveness of the proposed method is demonstrated by comparing with existing methods, which are Particle Swarm Optimization (PSO) and Convolution Neural Network (CNN). The experiments show that the proposed approach achieves satisfactory results with less computational complexity.

The Correlation between Speech Intelligibility and Acoustic Measurements in Children with Speech Sound Disorders (말소리장애 아동의 말명료도와 음향학적 측정치 간 상관관계)

  • Kang, Eunyeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.4
    • /
    • pp.191-206
    • /
    • 2018
  • Purpose : This study investigated the correlation between speech intelligibility and acoustic measurements of speech sounds produced by the children with speech sound disorders and children without any diagnosed speech sound disorder. Methods : A total of 60 children with and without speech sound disorders were the subjects of this study. Speech samples were obtained by having the subjects? speak meaningful words. Acoustic measurements were analyzed on a spectrogram using the Multi-speech 3700 program. Speech intelligibility was determined according to a listener's perceptual judgment. Results : Children with speech sound disorders had significantly lower speech intelligibility than those without speech sound disorders. The intensity of the vowel /u/, the duration of the vowel /${\omega}$/, and the second formant of the vowel /${\omega}$/ were significantly different between both groups. There was no difference in voice onset time between the groups. There was a correlation between acoustic measurements and speech intelligibility. Conclusion : The results of this study showed that the speech intelligibility of children with speech sound disorders was affected by intensity, word duration, and formant frequency. It is necessary to complement clinical setting results using acoustic measurements in addition to evaluation of speech intelligibility.

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Design of the Noise Suppressor Using Wavelet Transform (웨이블릿 변환을 이용한 잡음제거기 설계)

  • 원호진;김종학;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.37-46
    • /
    • 2001
  • This paper proposes a new noise suppression method using the Wavelet transform analysis. The noise suppressor using the Wavelet transform shows the more effective advantages in a babble noise than one using the short-time Fourier transform. We designed a new channel structure based on spectral subtraction of Wavelet transform coefficients and used the Wavelet mask pattern with more higher time resolution in high frequency. It showed a good adaptation capability for babble noise with a non-stationary property. To evaluate the performance of proposed noise canceller, the informal subjective listening tests (Mos tests) were performed in background noise environments (car noise, street noise, babble noise) of mobile communication. The proposed noise suppression algorithm showed about MOS 0.2 performance improvements than the suppression algorithm of EVRC in informal listening tests. The noise reduction by the proposed method was shown in spectrogram of speech signal.

  • PDF

The Edge Computing System for the Detection of Water Usage Activities with Sound Classification (음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템)

  • Seung-Ho Hyun;Youngjoon Chee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.