• Title/Summary/Keyword: time-domain simulations

Search Result 296, Processing Time 0.036 seconds

Numerical studies on non-linearity of added resistance and ship motions of KVLCC2 in short and long waves

  • Hizir, Olgun;Kim, Mingyu;Turan, Osman;Day, Alexander;Incecik, Atilla;Lee, Yongwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, numerical simulations for the prediction of added resistance for KVLCC2 with varying wave steepness are performed using a Computational Fluid Dynamics (CFD) method and a 3-D linear potential method, and then the non-linearities of added resistance and ship motions are investigated in regular short and long waves. Firstly, grid convergence tests in short and long waves are carried out to establish an optimal mesh system for CFD simulations. Secondly, numerical simulations are performed to predict ship added resistance and vertical motion responses in short and long waves and the results are verified using the available experimental data. Finally, the non-linearities of added resistance and ship motions with unsteady wave patterns in the time domain are investigated with the increase in wave steepness in both short and long waves. The present systematic study demonstrates that the numerical results have a reasonable agreement with the experimental data and emphasizes the non-linearity in the prediction of the added resistance and the ship motions with the increasing wave steepness in short and long waves.

A Fair Scalable Inter-Domain TCP Marker for Multiple Domain DiffServ Networks

  • Hur, Kyeong;Eom, Doo-Seop
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.338-350
    • /
    • 2008
  • The differentiated services (DiffServ) is proposed to provide packet level service differentiations in a scalable manner. To provide an end-to-end service differentiation to users having a connection over multiple domains, as well as a flow marker, an intermediate marker is necessary at the edge routers, and it should not be operated at a flow level due to a scalability problem. Due to this operation requirement, the intermediate marker has a fairness problem among the transmission control protocol (TCP) flows since TCP flows have intrinsically unfair throughputs due to the TCP's congestion control algorithm. Moreover, it is very difficult to resolve this problem without individual flow state information such as round trip time (RTT) and sending rate of each flow. In this paper, to resolve this TCP fairness problem of an intermediate marker, we propose a fair scalable marker (FSM) as an intermediate marker which works with a source flow three color marker (sf-TCM) operating as a host source marker. The proposed fair scalable marker improves the fairness among the TCP flows with different RTTs without per-flow management. Through the simulations, we show that the FSM can improve TCP fairness as well as link utilization in multiple domain DiffServ networks.

Channel Estimation and Compensation in the Frequency Domain-based BPM-UWB System (주파수 영역 기반 BPM-UWB 시스템에서의 채널 추정 및 보상)

  • Choi, Ho-Seon;Jang, Dong-Heon;An, Dong-Hun;Yang, Hoon-Gee;Yang, Seong-Hyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.882-890
    • /
    • 2008
  • To overcome the limit of the time-domain based channel estimation caused by the ADC speed, this paper present a new BPM-UWB receiver where the channel estimations and the compensations are digitally performed in the frequency domain. We theoretically show that the channel estimation can be accomplished by exploiting the periodicity of a training sequence consisting of finite number of pulses. We also present the digital receiver structure to implement the proposed system and derive its BER performances. Through computer simulations, we show the proposed receiver can dramatically improve the BER performances due to the incorporation of the estimated channel frequency response.

Supervised learning and frequency domain averaging-based adaptive channel estimation scheme for filterbank multicarrier with offset quadrature amplitude modulation

  • Singh, Vibhutesh Kumar;Upadhyay, Nidhi;Flanagan, Mark;Cardiff, Barry
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.966-977
    • /
    • 2021
  • Filterbank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is an attractive alternative to the orthogonal frequency division multiplexing (OFDM) modulation technique. In comparison with OFDM, the FBMC-OQAM signal has better spectral confinement and higher spectral efficiency and tolerance to synchronization errors, primarily due to per-subcarrier filtering using a frequency-time localized prototype filter. However, the filtering process introduces intrinsic interference among the symbols and complicates channel estimation (CE). An efficient way to improve the CE in FBMC-OQAM is using a technique known as windowed frequency domain averaging (FDA); however, it requires a priori knowledge of the window length parameter which is set based on the channel's frequency selectivity (FS). As the channel's FS is not fixed and not a priori known, we propose a k-nearest neighbor-based machine learning algorithm to classify the FS and decide on the FDA's window length. A comparative theoretical analysis of the mean-squared error (MSE) is performed to prove the proposed CE scheme's effectiveness, validated through extensive simulations. The adaptive CE scheme is shown to yield a reduction in CE-MSE and improved bit error rates compared with the popular preamble-based CE schemes for FBMC-OQAM, without a priori knowledge of channel's frequency selectivity.

On the Performance of Oracle Grid Engine Queuing System for Computing Intensive Applications

  • Kolici, Vladi;Herrero, Albert;Xhafa, Fatos
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.491-502
    • /
    • 2014
  • In this paper we present some research results on computing intensive applications using modern high performance architectures and from the perspective of high computational needs. Computing intensive applications are an important family of applications in distributed computing domain. They have been object of study using different distributed computing paradigms and infrastructures. Such applications distinguish for their demanding needs for CPU computing, independently of the amount of data associated with the problem instance. Among computing intensive applications, there are applications based on simulations, aiming to maximize system resources for processing large computations for simulation. In this research work, we consider an application that simulates scheduling and resource allocation in a Grid computing system using Genetic Algorithms. In such application, a rather large number of simulations is needed to extract meaningful statistical results about the behavior of the simulation results. We study the performance of Oracle Grid Engine for such application running in a Cluster of high computing capacities. Several scenarios were generated to measure the response time and queuing time under different workloads and number of nodes in the cluster.

Terahertz Spectroscopy and Molecular Dynamics Simulation of Five Citrates

  • Siyu Qian;Bo Peng;Boyan Zhang;Jingyi Shu;Zhuang Peng;Bo Su;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.86-96
    • /
    • 2024
  • This research investigation employs a terahertz (THz) time-domain spectroscopy system to study the terahertz spectral characteristics of five different citrates in both solution and solid state. The citrates under examination are lithium citrate, monosodium citrate, disodium citrate, trisodium citrate, and potassium citrate. The results show that the THz absorption coefficients of the first four citrate solutions exhibit a decreasing trend with increasing concentration. However, the potassium citrate solution shows an opposite phenomenon. At the same time, the absorption coefficients of lithium citrate, trisodium citrate, and potassium citrate solutions are compared at the same concentration. The results indicate that the absorption coefficient of citrate solution increases in proportion to the increase of metal cation radius, which is explained from the perspective of the influence of metal cations on hydrogen bonds. In addition, we also study the absorption peaks of solid citrates, and characterize the formation mechanism of the absorption peaks by molecular dynamics simulations. This methodology can be further extended to the study of multitudinous salts, presenting theoretical foundations for the detection in food and medicine industries.

Improving Performance of ART with Iterative Partitioning using Test Case Distribution Management (테스트 케이스 분포 조절을 통한 IP-ART 기법의 성능 향상 정책)

  • Shin, Seung-Hun;Park, Seung-Kyu;Choi, Kyung-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.6
    • /
    • pp.451-461
    • /
    • 2009
  • The Adaptive Random Testing(ART) aims to improve the performance of traditional Random Testing(RT) by reducing the number of test cases to find the failure region which is located in the input domain. Such enhancement can be obtained by efficient selection algorithms of test cases. The ART through Iterative Partitioning(IP-ART) is one of ART techniques and it uses an iterative input domain partitioning method to improve the performance of early-versions of ART which have significant drawbacks in computation time. And the IP-ART with Enlarged Input Domain(EIP-ART), an improved version of IP-ART, is known to make additional performance improvement with scalability by expanding to virtual test space beyond real input domain of IP-ART. The EIP-ART algorithm, however, have the drawback of heavy cost of computation time to generate test cases mainly due to the virtual input domain enlargement. For this reason, two algorithms are proposed in this paper to mitigate the computation overhead of the EIP-ART. In the experiments by simulations, the tiling technique of input domain, one of two proposed algorithms, showed significant improvements in terms of computation time and testing performance.

Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution

  • Gao, Quan;Wu, Guangxi;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.683-699
    • /
    • 2015
  • Time Domain Reflectometry (TDR) has been extensively applied for various laboratory and field studies. Numerous different TDR probes are currently available for measuring soil moisture content and detecting interfaces (i.e., due to landslides or structural failure). This paper describes the development of an innovative spiral-shaped TDR probe that features much higher sensitivity and resolution in detecting interfaces than existing ones. Finite element method (FEM) simulations were conducted to assist the optimization of sensor design. The influence of factors such as wire interval spacing and wire diameter on the sensitivity of the spiral TDR probe were analyzed. A spiral TDR probe was fabricated based on the results of computer-assisted design. A laboratory experimental program was implemented to evaluate its performance. The results show that the spiral TDR sensor featured excellent performance in accurately detecting thin water level variations with high resolution, to the thickness as small as 0.06 cm. Compared with conventional straight TDR probe, the spiral TDR probe has 8 times the resolution in detecting the water level changes. It also achieved 3 times the sensitivity of straight TDR probe.

Channel Estimation with Orthogonal Code in MIMO System (MIMO 환경에서 직교코드를 이용한 채널추정)

  • Park, Do-Hyun;Kang, Eun-Su;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.927-940
    • /
    • 2011
  • In this paper, we improve a time-domain channel estimation algorithm with multi-input multi-output (MIMO) systems for the next-generation digital television (DTV). The conventional algorithm use orthogonal codes for separating channels from the time-domain orthogonal frequency division multiplexing (OFDM) symbols. However. it has the disadvantage of reduced data-rate because of many pilots. The improved algorithm shows better performance than the conventional one even with reduced number of pilots. The improved algorithm is evaluated by computer simulations.

Numerical Simulation of Ground-Penetrating Radar Signals for Detection of Metal Pipes Buried in Inhomogeneous Grounds (비균일 지하에 매설된 금속관 탐지를 위한 지하탐사레이다 신호의 수치 모의계산)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • The effects of subsurface inhomogeneities on the detection of buried metal pipes in ground-penetrating radar(GPR) signals are investigated numerically. To model the electrical properties of the subsurface inhomogeneities, the continuous random media(CRM) generation technique is introduced. For the electromagnetic simulation of GPR signals, the finite-difference time-domain(FDTD) method is implemented. As a function of the standard deviation and the correlation length of the relative permittivity distribution for a randomly inhomogeneous ground, the GPR signals of the buried metal pipes are compared using numerical simulations. As the subsurface inhomogeneities increase, the GPR signals of the buried pipes are distorted because of the effect of the subsurface clutter.