Abstract
The Adaptive Random Testing(ART) aims to improve the performance of traditional Random Testing(RT) by reducing the number of test cases to find the failure region which is located in the input domain. Such enhancement can be obtained by efficient selection algorithms of test cases. The ART through Iterative Partitioning(IP-ART) is one of ART techniques and it uses an iterative input domain partitioning method to improve the performance of early-versions of ART which have significant drawbacks in computation time. And the IP-ART with Enlarged Input Domain(EIP-ART), an improved version of IP-ART, is known to make additional performance improvement with scalability by expanding to virtual test space beyond real input domain of IP-ART. The EIP-ART algorithm, however, have the drawback of heavy cost of computation time to generate test cases mainly due to the virtual input domain enlargement. For this reason, two algorithms are proposed in this paper to mitigate the computation overhead of the EIP-ART. In the experiments by simulations, the tiling technique of input domain, one of two proposed algorithms, showed significant improvements in terms of computation time and testing performance.
적응적 랜덤 테스팅(Adaptive Random Testing, ART)은 테스트 케이스의 효율적인 선택을 통해 순수 랜덤 테스팅(Random Testing, RT)보다 더 적은 수의 테스트 케이스를 이용해 입력 도메인 내의 오류를 찾는 것을 목적으로 한다. ART 기법 중 하나인 입력 도메인 반복 분할 기법(ART through Iterative Partitioning, IP-ART)은 초기 ART 기법의 단점인 많은 연산량을 입력 도메인 분할에 의해 효율적으로 개선되도록 하였으며, 입력 도메인 확장을 이용한 IP-ART(IP-ART with Enlarged Input Domain, EIP-ART)는 IP-ART의 테스트 케이스 분포 특징을 이용하여 추가적인 성능 향상과 확장성을 제공하였다. 하지만 EIP-ART는 입력 도메인 확장에 따라 발생하는 부하로 인해 테스트 케이스 생성에 오랜 시간을 요구하기 때문에 이의 개선이 필요하다. 따라서 본 논문에서는 두 가지의 추가 부하를 유발하지 않는 테스트 케이스 분포 조절 기법을 제안하고, 이들의 성능 개선 가능성을 실험을 통해 확인하였으며, 실험 결과, 제안된 두 기법 중 입력 도메인 타일링 기법이 모든 환경에서 더 우수한 성능 및 확장성을 갖는 것으로 확인되었다.