• Title/Summary/Keyword: time-domain

Search Result 5,725, Processing Time 0.03 seconds

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan;Jin, Kyung-Hwan;Ye, Jong-Chul;Ahn, Jae-Wook;Yee, Dae-Su
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

In-Cabinet Response Spectrum Generation Using Frequency Domain Analysis Method (진동수영역해석법을 이용한 캐비닛내부응답스펙트럼 생성 기법)

  • Cho, Sung Gook;So, Gihwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.

Impulsive sound localization using crest factor of the time-domain beamformer output (빔형성기 출력의 파고율을 이용한 충격음의 방향 추정)

  • Seo, Dae-Hoon;Choi, Jung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.713-717
    • /
    • 2014
  • This paper presents a beamforming technique for locating impulsive sound source. The conventional frequency-domain beamformer is advantageous for localizing noise sources for a certain frequency band of concern, but the existence of many frequency components in the wide-band spectrum of impulsive noise makes the beamforming image less clear. In contrast to a frequency-domain beamformer, it has been reported that a time-domain beamformer can be better suited for transient signals. Although both frequency- and time-domain beamformers produce the same result for the beamforming power, which is defined as the RMS value of its output, we can use alternative directional estimators such as the peak value and crest factor to enhance the performance of a time-domain beamformer. In this study, the performance of three different directional estimators, the peak, crest factor and RMS output values, are investigated and compared with the incoherent interfering noise embedded in multiple microphone signals. The proposed formula is verified via experiments in an anechoic chamber using a uniformly spaced linear array. The results show that the peak estimation of beamformer output determines the location with better spatial resolution and a lower side lobe level than crest factor and RMS estimation in noise free condition, but it is possible to accurately estimate the direction of the impulsive sound source using crest factor estimation in noisy environment with stationary interfering noise.

  • PDF

Measurement of the Propagation Constant of a Power Cable Using a Two-Port Time-Domain Reflectometry Technique (Two-Port Time Domain Reflectometry 방법을 이용한 XLPE 전력용 케이블의 전파 특성 측정)

  • Shin, Dong Sik;Cho, Hyeon Dong;Park, Wee Sang;Yi, Sang-Hwa;Sun, Jong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.310-315
    • /
    • 2013
  • This paper presents a two-port time-domain reflectometry(TDR) measurement technique for extracting the complex propagation constant of a cross-linked polyethylene(XLPE) cable. For the extraction, a short pulse transmitted through the cable is measured in the time domain and analyzed in the frequency domain. The propagation constant of a 22.9 kV XLPE cable with a conductor area of 325 $mm^2$ is extracted up to a frequency of approximately 2.14 GHz. The $S_{21}$ measured using a network analyzer and the two-port TDR technique are compared for verification. As a result compared with previous TDR method, the upper possible frequency limit for extracting the propagation constant increases and the measurement error decreases.

Frequency-to-time Transformation by a Diffusion Expansion Method (분산 전개법에 의한 주파수-시간 영역 변환)

  • Cho, In-Ky;Kim, Rae-Yeong;Ko, Kwang-Beom;You, Young-June
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 2014
  • Electromagnetic (EM) methods are generally divided into frequency-domain EM (FDEM) and time-domain EM (TDEM) methods, depending on the source waveform. The FDEM and TDEM fields are mathematically related by the Fourier transformation, and the TDEM field can thus be obtained as the Fourier transformation of FDEM data. For modeling in time-domain, we can use fast frequency-domain modeling codes and then convert the results to the time domain with a suitable numerical method. Thus, frequency-to-time transformations are of interest to EM methods, which is generally attained through fast Fourier transform. However, faster frequency-to-time transformation is required for the 3D inversion of TDEM data or for the processing of vast air-borne TDEM data. The diffusion expansion method (DEM) is one of smart frequency-to-time transformation methods. In DEM, the EM field is expanded into a sequence of diffusion functions with a known frequency dependence, but with unknown diffusion-times that must be chosen based on the data to be transformed. Especially, accuracy of DEM is sensitive to the diffusion-time. In this study, we developed a method to determine the optimum range of diffusion-time values, minimizing the RMS error of the frequency-domain data approximated by the diffusion expansion. We confirmed that this method produces accurate results over a wider time range for a homogeneous half-space and two-layered model.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

Dual-Domain Connection Scheme for HE-AAC and MPEG Surround

  • Pang, Hee-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.29-34
    • /
    • 2009
  • MPEG4 High Efficiency Advanced Audio Coding (HE-AAC) and MPEG Surround are one of the most efficient combinations for low bit rate multi-channel audio coding. Based on the fact that these two codecs have identical quadrature mirror filter (QMF) analysis and synthesis structures, we propose a dual-domain connection scheme for the codecs. Specifically two time-domain connection methods are analyzed and compared to the QMF subband-domain connection method. Experimental results show that both the time-domain connection methods cause no subjective sound quality degradation compared to the QMF subband-domain connection method, which verifies that one can select either of them depending on application scenarios.

High-Speed High-Resolution Terahertz Time-Domain Spectrometer (고속 고분해 테라헤르츠 시간영역 분광기)

  • Kim, Young-Chan;Kim, Ki-Bok;Yee, Dae-Su;Yi, Min-Woo;Ahn, Jae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.370-375
    • /
    • 2008
  • High-speed high-resolution terahertz time-domain spectroscopy (THz-TDS) is demonstrated using the asynchronous-opticalsampling (AOS) method. A time-domain signal with a 10-ns time window is rapidly acquired by using two femtosecond lasers with slightly different repetition frequencies to generate and detect a terahertz pulse wave, without a mechanical delay stage. The spectrum obtained by the fast Fourier transformation (FFT) of the time-domain waveform has a frequency resolution of 100 MHz. The time resolution of our spectrometer is measured using the cross-correlation method to be 278 fs. A transmission spectrum of water vapor is measured and the absorption lines are analyzed in the frequency range from 0.1 to 1.2 THz.

Analysis of Heart Rate Variability Signals in Time-Domain and Frequency-Domain (Heart Rate Variability 신호의 시간 및 주파수 영역 분석)

  • Kil, Jung-Su;Kwon, Ho-Yeol
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.163-167
    • /
    • 2002
  • Autonomic nervous system play an important role of keeping our health as balancing homeostasis. But the abnormality of these abilities makes our presence be feeble. To obtain these information of body which helps for us to decide whether one is healthy or not, based on the study of Heart Rate Variability. In this paper, we presented HRV model and its processing steps to extract some information of human body. After that, some experimental results are presented in time-domain and frequency-domain.

  • PDF