• 제목/요약/키워드: time-dependent strength

검색결과 277건 처리시간 0.023초

Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete

  • Shariq, M.;Prasad, J.
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.133-143
    • /
    • 2019
  • The paper presents the experimental investigations into the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent tensile strength of concrete. The splitting and flexural tensile strength of concrete was determined at the ages of 3, 7, 28, 56, 90, 150 and 180 days using the cylindrical and prism specimens respectively for plain and GGBFS concrete. The amount of cement replacement by GGBFS was 0%, 40% and 60% on the weight basis. The maximum curing age was kept as 28 days. The results showed that the splitting and flexural tensile strength of concrete containing GGBFS has been found lower than the plain concrete at all ages and for all mixes. The tensile strength of 40 percent replacement has been found higher than the 60 percent at all ages and for all mixes. The rate of gain of splitting and flexural tensile strength of 40 percent GGBFS concrete is found higher than the plain concrete and 60 percent GGBFS concrete at the ages varying from 28 to 180 days. The experimental results of time-dependent tensile strength of concrete are compared with the available models. New models for the prediction of time-dependent splitting and flexural tensile strength of concrete containing GGBFS are proposed. The present experimental and analytical study will be helpful for the designers to know the time-dependent tensile properties of GGBFS concrete to meet the design requirements of liquid retaining reinforced and pre-stressed concrete structures.

물성치 모델개발을 통한 고강도콘크리트의 시간의존 해석 (Time-dependent Analysis of High Strength Concrete Using Material Characteristics Model)

  • 이태규;김혜욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1096-1101
    • /
    • 2008
  • Concrete is shown the time dependent behavior after placing. The time dependent behavior of normal strength concrete that is used usually in present, were already examined closely lots of parameters by several investigators. however, high strength concrete is that the material characteristics are not definite and the experimental data are lacking. So, The goal of this study is to propose the material characteristics models, and to develop the routine of the time dependent behavior above 60 MPa. The thermal conductivity, the specific heat, the moisture diffusion coefficient, and the surface coefficient are proposed the suitable models through the parametric study. The structural element is used the 8-node solid element. The matrix equation is developed considering the transient heat transfer and moisture diffusion theory. The application of the time dependent behavior is used the finite differential method.

  • PDF

시간에 종속되는 스트렝스-스트레스 모형연구 - 스트렝스가 변하지 않는 경우 - (A Study on the Time Dependent Strength-Stress Model with Fixed Strength Case)

  • 이현우;김재주
    • 품질경영학회지
    • /
    • 제24권3호
    • /
    • pp.19-30
    • /
    • 1996
  • We treat problems of estimating reliability R(t) = P[Y(t) > X(t)] in the time dependent strength-stress model in which a unit of stress X(t) is subjected to environmental strength Y(t) at time t. In this paper we introduce a special model of R(t) with fixed strength and unaccumulated stress case, and propose a Mann-Whitney-Wilcoxon type estimator of R(t).

  • PDF

Nonparametric Estimation of Reliability in Time Dependent Strength-Stress Model

  • Lee, Hyun-Woo;Na, Myung-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.111-118
    • /
    • 1999
  • We treat the problem of estimating reliability R(t) = P[Y(t) < X(t)] in the time dependent strength-stress model in which a unit of strength X(t) is subjected to environmental stress Y(t) at time t. In this paper two nonparametric approaches to estimate of R(t) are analyzed and compared with parametric method by simulation.

  • PDF

Maximization in Reliability Design when Stress/Strength has Time Dependent Model of Deterministic Cycle Times

  • Oh, Chung-Hwan
    • 품질경영학회지
    • /
    • 제18권1호
    • /
    • pp.129-147
    • /
    • 1990
  • This study is to refer to the optimization problems when the stress and strength follow the time dependent model, considering a decision making process in the design methodology from reliability viewpoint. Reliability of a component can be expressed and computed if the probability distributions for the stress and strength in the time dependent case are known. The factors which determine the parameters of the distributions for stress and strength random variables can be controlled in design problems. This leads to the problem of finding the optimal values of these parameters subject to resources and design constraints. This paper is to present techniques for solving the optimization problems at the design stage like as minimizing the total cost to be spent on controlling the stress and strength parameters for random variables subject to the constraint that the component must have a specified reliability, alternatively, maximizing the component reliability subject to certain constraints on amount of resources available to control the parameters. The derived expressions and computations of reliability in the time dependent case and some optimization models of these cases are discussed. The special structure of these models is exploited to develop the optimization techniques which are illustrated by design examples.

  • PDF

PSC 교량용 설계강도 60MPa 이상 고강도 콘크리트의 실용화를 위한 시간의존적 변형 및 내구성에 관한 연구 (Time-Dependent Deformation and Durability of High-Strength Concrete over 60MPa for PSC Bridges)

  • 양준모;이주하;정해문;안태송;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.5-8
    • /
    • 2006
  • In this study, various fundamental experiments including durability and time-dependent deformation are performed to compile a database for a utilization of high-strength concrete for PSC bridges. In the mix design, concrete strength at early age when prestressing forces are introduced to the PSC member and slumpflow suitable for pumping of concrete are considered to make a concrete fit for PSC bridges. The main parameters investigated are the kinds and replacement ratios of mineral admixtures and low-heat cement. Experimental tests on durability include penetration of chloride ions, freezing-thawing, combined deterioration, and simple adiabatic temperature rise test. In addition, time-dependent deformation such as creep, drying and autogenous shrinkage, which is particularly important factor in the design and construction of PSC bridges, is tested and analyzed.

  • PDF

Numerical simulation of set-up around shaft of XCC pile in clay

  • Liu, Fei;Yi, Jiangtao;Cheng, Po;Yao, Kai
    • Geomechanics and Engineering
    • /
    • 제21권5호
    • /
    • pp.489-501
    • /
    • 2020
  • This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.

Finite element model for the long-term behaviour of composite steel-concrete push tests

  • Mirza, O.;Uy, B.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.45-67
    • /
    • 2010
  • Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.

Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders

  • Kim, Do Kyun;Park, Dae Kyeom;Park, Dong Hee;Kim, Han Byul;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.531-549
    • /
    • 2012
  • Numerous oil tanker losses have been reported and one of the possible causes of such casualties is caused by the structural failure of aging ship hulls in rough weather. In aging ships, corrosion and fatigue cracks are the two most important factors affecting structural safety and integrity. This research is about effect on hull girder ultimate strength behavior of double hull oil tanker according to corrosion after Part I: stiffened panel. Based on corrosion data of Part I (time-dependent corrosion wastage model and CSR corrosion model), when progressing corrosion of fourtypes of double hull oil tankers (VLCC, Suezmax, Aframax, and Panamax), the ultimate strength behavior of hull girder is compared and analyzed. In case of the ultimate strength behavior of hull girder, when occurring corrosion, the result under vertical and horizontal bending moment is analyzed. The effect of time-dependent corrosion wastage on the ultimate hull girder strength as well as the area, section modulus, and moment of inertia are also studied. The result of this research will be useful data to evaluate ultimate hull girder strength of corroded double hull oil tanker.

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.