Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.5.489

Numerical simulation of set-up around shaft of XCC pile in clay  

Liu, Fei (School of Civil Engineering, Chongqing University)
Yi, Jiangtao (School of Civil Engineering, Chongqing University)
Cheng, Po (School of Civil Engineering, Chongqing University)
Yao, Kai (School of Qilu Transportation, Shandong University)
Publication Information
Geomechanics and Engineering / v.21, no.5, 2020 , pp. 489-501 More about this Journal
Abstract
This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.
Keywords
XCC pile; coupled effective stress analysis; large deformation; time-dependent strength; pile shaft resistance;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 API (2002), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, American Petroleum Institute, Washington, U.S.A.
2 Azari, B., Fatahi, B. and Khabbaz, H. (2015), "Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour", Geomech. Eng., 8(2), 187-220. https://doi.org/10.12989/gae.2015.8.2.187.   DOI
3 Basu, P., Prezzi, M., Salgado, R. and Chakraborty, T. (2014), "Shaft resistance and setup factors for piles jacked in clay", J. Geotech. Geoenviron. Eng., 140(3), 04013026. https://doi.org/10.1061/(ASCE)GT.19435606.0001018.   DOI
4 Li, C., Zou, J.F. and Li, L. (2020), "A novel approach for predicting lateral displacement caused by pile installation", Geomech. Eng., 20(2), 147-154. https://doi.org/10.12989/gae.2020.20.2.147.   DOI
5 Li, J.P., Li, L., Sun, D.A. and Gong, W.B. (2017), "Time-dependent bearing capacity of jacked piles in K0 consolidated clay based on CPTU tests", Chin. J. Geotech. Eng., 39(2), 193-200. https://doi.org/10.11779/CJGE201702001.
6 Li, L., Li, J., Sun, D.A. and Gong, W. (2019), "A feasible approach to predicting time-dependent bearing performance of jacked piles from CPTu measurements", Acta Geotechnica, 1-18. https://doi.org/10.1007/s11440-019-00875-x.
7 Li, L., Li, J., and Sun, D.A (2016), "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.   DOI
8 Li, L., Li, J., Sun, D.A and Gong, W. (2017a), "Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method", Int. J. Geomech., 17(7), 04016156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000860.   DOI
9 Li, L., Li, J., Sun, D.A. and Gong, W. (2017b), "Semi-analytical approach for time-dependent load-settlement response of a jacked pile in clay strata", Can. Geotech. J., 54(12), 1682-1692. https://doi.org/10.1139/cgj-2016-0561.   DOI
10 Lim, Y.X., Tan, S. and Phoon, K. (2018), "Application of press-replace method to simulate undrained cone penetration", Int. J. Geomech., 18(7), 04018066. https://doi.org/10.1061/(asce)gm.1943-5622.0001186.   DOI
11 Liu, H.L., Zhou, H. and Kong, G.Q. (2014), "XCC pile installation effect in soft soil ground: A simplified analytical model", Comput. Geotech., 62, 268-282. https://doi.org/10.1016/j.compgeo.2014.07.007.   DOI
12 Wang, D. and Bienen, B. (2016), "Numerical investigation of penetration of a large-diameter footing into normally consolidated kaolin clay with a consolidation phase", Geotechnique, 66(11), 947-952. https://doi.org/10.1680/jgeot. 15.P.048.   DOI
13 Ni, P., Mangalathu, S., Mei, G. and Zhao, Y. (2018), "Laboratory investigation of pore pressure dissipation in clay around permeable piles", Can. Geotech. J., 55(9), 1257-1267. https://doi.org/10.1139/cgj-2017-0180.   DOI
14 Rezania, M., Mousavi Nezhad, M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: Case study", Int. J. Geomech., 17(3), 04016075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.   DOI
15 Silvestri, V. and Abousamra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.   DOI
16 Sun, G.C, Kong, G.Q., Liu, H.L and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Can. Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj-2015-0623.   DOI
17 Ullah, S.N., Hou, L.F., Satchithananthan, U., Chen, Z. and Gu, H. (2018), "A 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUS", Comput. Geotech., 99, 203-215. https://doi.org/10.1016/j.compgeo.2018.01.018.   DOI
18 Wang, S., Ni, P., Chen, Z. and Mei, G. (2019), "Consolidation solution of soil around a permeable pipe pile", Mar. Georesour. Geotechnol., 1-9. https://doi.org/10.1080/1064119X.2019.1655119.
19 Xu, X.T., Liu, H.L and Lehane, B.M. (2006), "Pipe pile installation effects in soft clay", Proc. Inst. Civ. Eng. Geotech. Eng., 159(4), 285-296. https://doi.org/10.1680/geng.2006.159.4.285.   DOI
20 Zhang, D.D., Lv, Y.R., Liu, H.L. and Wang, M.Y. (2015), "An analytical solution for load transfer mechanism of XCC pile foundations", Comput. Geotech., 67, 223-228. https://doi.org/10.1016/j.compgeo.2015.03.006.   DOI
21 Zhou, H., Liu, H.L, Yuan, J.R. and Chu, J. (2019), "Numerical simulation of XCC pile penetration in undrained clay", Comput. Geotech., 106, 18-41. https://doi.org/10.1016/j.compgeo.2018.10.009.   DOI
22 Zhou, H., Yuan, J.R., Liu, H.L. and Kong, G.Q. (2018), "Analytical model for evaluating XCC pile shaft capacity in soft soil by incorporating penetration effects", Soils Found., 58(5), 1093-1112. https://doi.org/10.1016/j.sandf.2018.04.005.   DOI
23 Kim, T., Kim, N, K., Tumay, M.T. and Lee, W. (2007), "Spatial distribution of excess pore-water pressure due to piezocone penetration in overconsolidated clay", J. Geotech. Geoenviron. Eng., 133(6), 674-683. https://doi.org/10.1061/(ASCE)10900241(2007)133:6(674).   DOI
24 Burns, S. and Mayne, P. (1998), "Monotonic and dilatory pore-pressure decay during piezocone tests in clay", Can. Geotech. J., 35(6), 1063-1073. https://doi.org/10.1139/cgj-35-6-1063.   DOI
25 Ceccato, F., Beuth, L., Vermeer, P.A. and Simonini, P. (2016), "Two-phase material point method applied to the study of cone penetration", Comput. Geotech., 80, 440-452. https://doi.org/10.1016/j.compgeo.2016.03.003.   DOI
26 Chai, J.C., Hossain, M.J., Yuan, D.J., Shen, S.L. and Carter, J.P. (2016), "Pore pressures induced by piezocone penetration", Can. Geotech. J., 53(3), 540-550. https://doi.org/10.1139/cgj-2015-0206.   DOI
27 Ding, X.M., Luan, L.B., Liu, H.L., Zheng, C.J., Zhou, H. and Qin, H.Y. (2020), "Performance of X-section cast-in-place concrete piles for highway constructions over soft clays", Transport. Geotech., 22, 100310. https://doi.org/10.1016/j.trgeo.2019.100310.   DOI
28 Hamann, T., Qiu, G. and Grabe, J. (2015), "Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions", Comput. Geotech., 63, 279-290. https://doi.org/ 10.1016/j.compgeo.2014.10.006.   DOI
29 Kong, G.Q., Zhou, H., Ding, X.M. and Cao, Z.H. (2015), "Measuring effects of X-section pile installation in soft clay", Proc. Inst. Civ. Eng. Geotech. Eng., 168(4), 296-305. https://doi.org/10.1680/geng.14.00048.   DOI
30 Lee, J., Kim, M. and Lee, S. (2009), "Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles", Geomech. Eng., 1(1), 17-34. https://doi.org/10.12989/gae.2009.1.1.017.   DOI
31 Lv, Y.R., Liu, H.L., Ng, C.W.W., Gunawan, A. and Ding, X.M (2014b), "A modified analytical solution of soil stress distribution for XCC pile foundations", Acta Geotechnica, 9(3), 529-546. https://doi.org/10.1007/s11440-013-0280-1.   DOI
32 Liu, J.W., Zhang, Z.M., Yu, F. and Xie, Z.Z. (2012), "Case history of installing instrumented jacked open-ended piles", J. Geotech. Geoenviron. Eng., 138(7), 810-820. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000638.   DOI
33 Lorenzo, R., Cunha, R.P.D., Neto, M.P.C. and Nairn, J.A. (2016), "Numerical simulations of deep penetration problems using the material point method", Geomech. Eng., 11(1), 59-76. https://doi.org/10.12989/gae.2016.11.1.059.   DOI
34 Lv, Y.R. and Zhang, D.D. (2018), "Geometrical effects on the load transfer mechanism of pile groups: Three-dimensional numerical analysis", Can. Geotech. J., 55(5), 749-757. https://doi.org/10.1139/cgj-2016-05181.   DOI
35 Lv, Y.R., Liu, H.L., Ding, X.M and Kong, G.Q. (2012), "Field tests on bearing characteristics of X-section pile composite foundation", J. Perform. Constr. Fac., 26(2), 180-189. https://doi.org/10.1061/(ASCE)CF. 1943-5509.0000247.   DOI
36 Lv, Y.R., Liu, H.L., Ng, C.W.W., Ding, X.M. and Gunawan, A. (2014a), "Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation", Comput. Geotech., 55, 365-377. https://doi.org/10.1016/j.compgeo.2013.09.019.   DOI
37 Mahmoodzadeh, H., Wang, D. and Randolph, M. (2015), "Interpretation of piezoball dissipation testing in clay", Geotechnique, 65(10), 831-842. https://doi.org/10.1680/jgeot.14.P.213.   DOI
38 Ni, P., Mangalathu, S., Mei, G. and Zhao, Y. (2017), "Permeable piles: An alternative to improve the performance of driven piles", Comput. Geotech., 84, 78-87. https://doi.org/10.1016/j.compgeo.2016.11.021.   DOI
39 Yi, J.T., Zhao, B., Li, Y.P., Yang, Y., Lee, F.H., Goh, S.H., Zhang. X.Y. and Wu, J. (2014), "Post-installation pore-pressure changes around spudcan and long-term spudcan behaviour in soft clay", Comput. Geotech., 56, 133-147. https://doi.org/ 10.1016/j.compgeo.2012.01.006.   DOI
40 Yi, J.T., Lee, F.H., Goh, S.H., Zhang, X.Y. and Wu, J. (2012), "Eulerian finite element analysis of excess pore pressure generated by spudcan installation into soft clay", Comput. Geotech., 42, 157-170. https://doi.org/10.1016/j.compgeo.2012.01.006.   DOI