• Title/Summary/Keyword: time-dependent effects

Search Result 1,856, Processing Time 0.027 seconds

Development of QC Shell Element For Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 쉘요소 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Song, Sak;Kim, Young-Hoe;Pornpeerakeat, Sacharuck;Kim, Ki-Du
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.557-562
    • /
    • 2007
  • In order to analyze the PSC box-girder bridge by the cantilever construction method, three dimensional analysis method using the PSC shell clement is suggested. The time dependent material functions are based on the ACI and CEB code. The time dependent concrete material properties considered are changes in strength, elastic modulus, creep and shrinkage. For the prestressing tendon, relaxation effects are considered. Anchorage and friction loses during tendon installations are also included. The ACI and CEB material models for creep and elastic modulus are also included.

  • PDF

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie;Frangopol, Dan M.;Soliman, Mohamed
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1239-1258
    • /
    • 2015
  • This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.

Densification of Aggregated Alumina Powder under Cyclin Compaction (반복압축하의 응집된 알루미나 분말의 치밀화)

  • Kim, K.T.;Son, G.S.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1992
  • The effects of cyclic stress, frequency and bias-pressure on densification of Al2O3 powder cyclic compaction are investigated. The effect of frequency was not significant on densification of Al2O3 powder under cyclic compaction. The higher the cyclic stress and the lower the bias pressure, the higher densification was achieved. To obtain a higher densification, cyclic compaction was more efficient than 1 stroke compaction. A densification equation was proposed to describe an cyclic time dependent pressure-volume relation for Al2O3 powder under cyclic compaction. This equation was obtained empirically, based on the pressure-volume equation proposed by Cooper and Eaton, the time dependent densification equation by Kim and Suh and experimental data for Al2O3 powder under cyclic compaction. The agreement between the proposed equation and experimental data for Al2O3 powder under cyclic compaction was very good.

  • PDF

Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers

  • Wang, Haojie;Yan, Wei;Li, Chunyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.599-611
    • /
    • 2020
  • A state-space method is developed to investigate the time-dependent behaviors of an angle-ply cylindrical shell in cylindrical bending with surface-bonded piezoelectric layers. Both the interfacial diffusion and sliding are considered to describe the properties of the imperfect interfaces. Particularly, a matrix reduction technique is adopted to establish the transfer relations between the elastic and piezoelectric layers of the laminated shell. Very different from our previous paper, in which an approximate numerical technique, i.e. power series expansion method, is used to deal with the time-dependent problems, the exact solutions are derived in the present analysis based on the piezoelasticity equations without any assumptions. Numerical results are finally obtained and the effects of imperfect interfaces on the electro-mechanical responses of the laminated shell are discussed.

Semi-analytical stability behavior of composite concrete structures via modified non-classical theories

  • Luxin He;Mostafa Habibi;Majid Khorami
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.187-210
    • /
    • 2024
  • Cantilever structures demonstrate diverse nonlocal effects, resulting in either stiffness hardening or dynamic softening behaviors, as various studies have indicated. This research delves into the free and forced vibration analysis of rotating nanoscale cylindrical beams and tubes under external dynamic stress, aiming to thoroughly explore the nonlocal impact from both angles. Utilizing Euler-Bernoulli and Reddy beam theories, in conjunction with higher-order tube theory and Hamilton's principle, nonlocal governing equations are derived with precise boundary conditions for both local and nonlocal behaviors. The study specifically examines two-dimensional functionally graded materials (2D-FGM), characterized by axially functionally graded (AFG) and radial porosity distributions. The resulting partial differential equations are solved using the generalized differential quadrature element method (GDQEM) and Newmark-beta procedures to acquire time-dependent results. This investigation underscores the significant influence of boundary conditions when nonlocal forces act on cantilever structures.

Fluvastatin inhibits advanced glycation end products-induced proliferation, migration, and extracellular matrix accumulation in vascular smooth muscle cells by targeting connective tissue growth factor

  • Hwang, Ae-Rang;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • Connective tissue growth factor (CTGF) is a novel fibrotic mediator, which is considered to mediate fibrosis through extracellular matrix (ECM) synthesis in diabetic cardiovascular complications. Statins have significant immunomodulatory effects and reduce vascular injury. We therefore examined whether fluvastatin has anti-fibrotic effects in vascular smooth muscle cells (VSMCs) and elucidated its putative transduction signals. We show that advanced glycation end products (AGEs) stimulated CTGF mRNA and protein expression in a time-dependent manner. AGE-induced CTGF expression was mediated via ERK1/2, JNK, and Egr-1 pathways, but not p38; consequently, cell proliferation and migration and ECM accumulation were regulated by CTGF signaling pathway. AGE-stimulated VSMC proliferation, migration, and ECM accumulation were blocked by fluvastatin. However, the inhibitory effect of fluvastatin was restored by administration of CTGF recombinant protein. AGE-induced VSMC proliferation was dependent on cell cycle arrest, thereby increasing G1/G0 phase. Fluvastatin repressed cell cycle regulatory genes cyclin D1 and Cdk4 and augmented cyclin-dependent kinase inhibitors p27 and p21 in AGE-induced VSMCs. Taken together, fluvastatin suppressed AGE-induced VSMC proliferation, migration, and ECM accumulation by targeting CTGF signaling mechanism. These findings might be evidence for CTGF as a potential therapeutic target in diabetic vasculature complication.

Dose-dependent Effects of Betaine on Hepatic Metabolism of Sulfur Amino Acids in Mice (마우스 간의 황함유 아미노산 대사에 미치는 베타인의 용량의존성 영향)

  • Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.53 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • Acute betaine treatment induces time-dependent changes in the hepatic glutathione (GSH), cysteine and S-adenosylmethionine (SAM) levels. Our previous study demonstrated that betaine administered $1{\sim}4$ hours prior to sacrifice decreased hepatic GSH levels, but these levels were increased when measured 24 hours following the treatment. The present study was aimed to determine dose-dependent effects of betaine on hepatic metabolism of sulfur amino acid in mice. Mice were sacrificed 2.5 or 24 hours after intraperitoneal treatment with betaine at different dose levels ranging from 50 to 1000 mg/kg. The concentrations of methionine and SAM were increased by a betaine dose of 100 mg/kg, and the concentrations of GSH and cysteine were decreased by a betaine dose of 200 mg/kg at 2.5 hours. These changes were augmented with increasing doses of betaine. At 24 hours following betaine treatment, increased GSH and decreased taurine levels were observed from dose levels of 400 mg/kg. Changes in hepatic activities of cystathionine beta-synthase, gammaglutamylcysteine ligase and cysteine dioxygenase were observed from dose levels of $200{\sim}400$ mg/kg of betaine administered 24 hours prior to sacrifice.

Deoxypodophyllotoxin Induces ROS-Mediated Apoptosis by Modulating the PI3K/AKT and p38 MAPK-Dependent Signaling in Oral Squamous Cell Carcinoma

  • Seo, Ji-Hye;Yoon, Goo;Park, Seryoung;Shim, Jung-Hyun;Chae, Jung-Il;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1103-1109
    • /
    • 2022
  • Deoxypodophyllotoxin (DPT), a naturally occurring flavonolignan, possesses several pharmacological properties, including anticancer property. However, the mechanisms underlying DPT mode of action in oral squamous cell carcinoma (OSCC) remain unknown. This study aimed to investigate the anticancer effects of DPT on OSCC and the underlying mechanisms. Results of the MTT assay revealed that DPT significantly reduced the cell viability in a time- and dose-dependent manner. Flow cytometry analysis revealed that DPT induces apoptosis in OSCC cells in a dose-dependent manner. Moreover, DPT enhanced the production of mitochondrial reactive oxygen species (ROS) in OSCC cells. Mechanistically, DPT induced apoptosis in OSCC cells by suppressing the PI3K/AKT signaling pathway while activating the p38 MAPK signaling to regulate the expression of apoptotic proteins. Treatment with SC79, an AKT activator, reversed the effects of DPT on AKT signaling in OSCC cells. Taken together, these results provide the basis for the use of DPT in combination with conventional chemotherapy for the treatment of oral cancer.

Luteolin Inhibits Proliferation Induced by IGF-1 Pathway Dependent ERα in Human Breast Cancer MCF-7 Cells

  • Wang, Li-Meng;Xie, Kun-Peng;Huo, Hong-Nan;Shang, Fei;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1431-1437
    • /
    • 2012
  • The growth of many breast tumors is stimulated by IGF-1, which activates signal transduction pathways inducing cell proliferation. $ER{\alpha}$ is important in this process. The aim of the study was to investigate relationships in vitro among inhibitory effects of luteolin on the growth of MCF-7 cells, IGF-1 pathway and $ER{\alpha}$. Our results showed that luteolin could effectively block IGF-l-stimulated MCF-7 cell proliferation in a dose- and time-dependent manner and block cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub-G1DNA content. Luteolin markedly decreased IGF-l-dependent IGF-IR and Akt phosphorylation without affecting Erk1/2 phosphorylation. Further experiments pointed out that $ER{\alpha}$ was directly involved in IGF-l induced cell growth inhibitory effects of luteolin, which significantly decreased $ER{\alpha}$ expression. Knockdown of $ER{\alpha}$ in MCF-7 cells by an $ER{\alpha}$-specific siRNA decreased the IGF-l induced cell growth inhibitory effects of luteolin. $ER{\alpha}$ is thus a possible target of luteolin. These findings indicate that the inhibitory effect of luteolin on the growth of MCF-7 cells is via inhibiting IGF-l mediated PI3K-Akt pathway dependent of $ER{\alpha}$ expression.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.